EFFICIENT ESTIMATION OF A REGRESSION PARAMETER FOR
CERTAIN SECOND ORDER PROCESSES!

By CuHARLOTTE T. STRIEBEL

Lockheed Missiles and Space Division, Sunnyvale, California

0. Summary. The problem of estimation of a single regression parameter for
a process with fixed known regression function and unknown covariance is
attacked using a Hilbert space representation of the process. Some general
results are obtained which characterize efficiency classes of covariances—that is,
classes for each of which there exists a single estimate that is efficient for all
members. These results are applied to both the discrete parameter and the con-
tinuous parameter stationary process with rational spectral density. Some special
results are also obtained concerning the efficiency of the least square estimate.

1. Introduction. Let z(t) be a second order complex-valued process with mean
value function zero and covariance

(1.1) Elz(t)z(s)] = R(4, s),
and suppose that the process
(1.2) y(t) = ke(t) + 2(t)

is observed for the parameter ¢ in a subset C'” of the real line. The function ¢(¢)
is known, and the parameter & is to be estimated. The subsets of interest will be
the intervals (—w <t £ T) and (0 = ¢ = T) for the continuous parameter
process and the integers (¢ = T, T — 1,--- )and ¢ = T, T — 1, ---,0) for
the discrete parameter process.

A linear unbiased estimate with finite variance will be represented as a linear

functional
(1.3) E" = k"ly(1), te C"],

which is the limit in quadratic mean of unbiased finite linear combinations of
the y(t) process, that is,

Mmn

(14) 2 kim y(tim) 225 £ asm — o,
ie=1

where

(1.5) v tmeC”

and
Mm

(1°6) 2k§m¢(t?m) = L.
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The limit &7 of (1.4) is a random variable with finite variance. It can be thought
of as an element of the L, space over the underlying probability space, it can be
made to correspond to an element in the reproducing kernel Hilbert space defined
by the kernel R(s, t) (see Parzen [10]), or a correspondence can be set up with
elements of another L, space as will be done in Section 2. However, it seems more
appropriate to use the notation of a linear functional (1.3), since an estimate
must finally be reduced to this form so that it can be applied to elements y(t)
of the sample space. Thus the notation k" will always refer to a particular se-
quence of coefficients {k7,} and time points {t;,} satisfying (1.4)-(1.6), and the
expression k”[f(t), ¢t ¢ C"] will indicate the limit in the topology of the range
space of f(t) of the sums Y ; k5, (¢5) provided this limit exists.

Since only linear unbiased estimates will be considered, and the criterion by
which an estimate will be judged is its variance, it is clear that only second order
properties are involved, so that for these purposes the estimation problem is
completely determined by the pair (R, ¢). An estimate k" is said to be asymptoti-
cally efficient or simply efficzent for the problem (R, ¢) provided

. T
(1.7) E(T) = YHance b, as T — o,
variance k
where %" is the minimum variance unbiased estimate of k for the process (1.2)
with ¢ £ C*. E(T) will be called the efficiency for the problem (R, ¢).

Interest in efficient estimates arises from the fact that the ‘“best” estimate

k" may be very inconvenient. This estimate is determined by the linear equation

(1.8) ET[R(t, s),te C") = M"(s), s € C”,

where M” is a constant. For many problems of interest, the solution to this
equation is difficult to exhibit explicitly, and provided it can be computed at all,
it will depend on complete knowledge of R(#, s). Thus, if the function ¢(%),
which will be called the regression function, is known, but information concerning
the covariance is limited or can be obtained only at considerable expense, it is
desirable to find an estimate that is economical of information concerning R (¢, s)
in that it is efficient for as wide a class of covariance functions as possible.

The principal estimate that has been proposed is the least square estimate
given, for example, by

(19) - foT OO dt/foT () dt

for the case C* = (0 < ¢t < T'). This estimate has the advantages that it is easy

to compute and requires no knowledge whatever of the covariance. Previous

work on the problem of efficient estimates has been restricted to stationary

processes, that is, R(t, s) = R(¢ — s), and has been primarily devoted to deter-

mining those combinations (R, ¢) for which the least square estimate is efficient.
For the continuous parameter Ornstein-Uhlenbeck process,

(1.10) R(r) = ",
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and for regression functions

(1.11) o(t) =t or ™

where r is a non-negative integer and A, is a real frequency, Mann and Moranda
[9] proved that the least square estimate is efficient. The author in [13] extended
this result to include regression functions of the form

(1.12) o(t) = te™

and showed further that for the more general function,
(1.13) o(t) = 2 ea'e™,
a=1

where the ¢, are non-zero constants, the A, are real and distinct, and n > 1, the
least square estimate is not efficient. .

For a much broader class of covariance function and essentially the same re-
gression functions, this problem was first discussed by Grenander in [2]. Further
work was carried out by Grenander and Rosenblatt in [3] and [4]. Rosenblatt
considered some of the same problems in the case of vector-valued time series in
[11] and extended his results in [12]. Most of these results, together with some
examples, appear in Chapter 7 of [5]. In this work only the discrete parameter
case is considered, and the regression functions considered are slightly more
general than those of the form (1.13). All restrictions on the class of covariances
are imposed on the equivalent class of spectral densities f(\), which by assump-
tion exist and satisfy the relation

1 ™M) dA

27|' —T

(1.14) R(t) =
for a discrete parameter process and

(1.15) Rt =1 [ 0 an
21!' — 0

for a continuous parameter process. In the discrete parameter case for positive
continuous spectral density and “slowly increasing” regression function, a neces-
sary and sufficient condition is given in [5] for the least square estimate to be
efficient. The same theorem is obtained in [13] for the continuous parameter
Ornstein-Uhlenbeck process and regression function of the form (1.13). Theorem
4 in Section 3 extends this result to the continuous parameter processes with
rational spectral density.

In Chapter 1.3 of [6] Grenander and Szegé reproduce a few of the results of
[5] using the methods of Toeplitz forms. In Chapter 1.4, under certain regularity
conditions on f(A), he extends his results to the continuous parameter case for
the single example

(1.16) o(t) = 1.
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With the exception of those in [6], all the above-mentioned results are derived
for the more general problem

(L.17) By®)] = 3 kied),

where the k; are unknown parameters and the ¢;(¢) are known functions. For
p > 1, the definition of efficiency used by Mann, Moranda, and Striebel is dif-
ferent from that used by Rosenblatt and Grenander. For the case p = 1, both
agree with definition (1.7) made above. In the present paper only the case p = 1
will be considered though it is believed that the results obtained could be gen-
eralized to larger values of p.

In Section 2, for a rather broad class of processes, necessary and sufficient
conditions are given for the existence of an estimate that is efficient for two prob-
lems (R:, ¢) and (R:, ¢). When such an estimate exists, it will be said that R,
and R, are efficiency equivalent. In Section 3 these results are applied to.the prob-
lem of a stationary process with rational spectral density and regression function
(1.13) where the A, are complex with 92, = —a = 0. Both the continuous and
discrete cases are considered.

2. Efficiency equivalence. It will be assumed that (f) and R(i, s) can be
represented as follows:

(2.1) R(t,s) = fAE(t, ME(sN) dF(N),

(2.2) o0 = [ 56 NFW) ar(V), te”,

where £(¢, \) is a complex-valued measurable function on R X R, the set
(2.3) A=U U (gt N =0)
T tecT

is measurable, F is a measure on the subspace (A, ®) of the reals, and d7()) is
in the linear span L"(F) of {£(t, ), t € C"} in the Hilbert space Lo(A, ®, F).
Under these assumptions it follows that to each unbiased linear estimate %7
with finite variance there corresponds an element n”(\) in the subspace L”(F)
such that

(24) n"(N) = k'[N, 1), t e CT),
(2.5) @, n") =1,

and

(2.6) variance & = (n”, n").

The. function »”(\) corresponding to £” is unique a.s. F. A minimum variance
unbiased estimate %7 exists,

"(\) _ 41
(2.7) ‘ (_‘I’T’—‘i’}_j =k (£t N, te (o8
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and
(2.8) variance k7 = 1/(®7,®").

These results are fairly standard and can be obtained for example, from more

general results by Parzen [10].
The cases which will be considered in the next section are

£(t, ) = (2m) ™,

A = [—m, 7] for the discrete and A = (— », «) for the continuous parameter
stationary process. The solution ®”(\) of the equation (2.2) will be found by
the Wiener-Hopf technique for C” half-infinite.

Let F; be measures for which there exists ®; satisfying (2.2). Consider n{;(\)
in L"(F;) which corresponds to an unbiased estimate k; for the problem (R;, ¢).
The following measures can then be defined:

(29) W® = [ I arm) / [ et 0P aro),

10) 5B = [ Whorare) /[ sorano.

The first subscript on n;; will be omitted when it is clear what problem (F;, ¢)
is intended. The efficiency E;;(T') for the estimate n] () for the problem (F;, ¢)

is given by

(2.11) = [mfrar) [ ef o ar).

J(T)
LemMa 1. If n (\) s unbiased and efficient for (F;, ¢), then
|ui (B) — vi;(B)| —0 as T— o

uniformly for B € ®.
Proor. The subscripts will be omitted in the proof. Let

i
4y = [ [mroop dF(A)], br = 87OV POV

then
W'(B) — (B < [ I"I’ b(;‘)l _ln 2L ar oy
"\ _n ®"(\) , n
= f br - ‘ar br +
»"(\) =n <1>T(>\)
= {752 - T T v

{G+z- ?ﬂb_"—))( T m)}

The first inequality takes the absolute value under the 1ntegra1; the second uses
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the elementary inequality
| [laf" = BF < la = 8l Ja + bl;
and the third is the Schwarz inequality. Since the estimate is unbiased,
@",n") =1,
and, since it is efficient,
1/E(T) = (n",n")(®",®") = arby — 1.

LeMMA 2. Let ng and ni be unbiased and efficient for (R, ¢). If vi; converges
weakly to a measure Ny ,

T w
V11——~>N11,

then viy also converges weakly to that measure,

T
131)) —u; N 11 -
T
Complete convergence of vi1
VlTl % N 1
. . T
implies complete convergence of vig
T ¢
Vip — N 11 -

The terms weak and strong convergence are according to Logve [8]. This lemma
is immediate from Lemma 1.

When it is said that & or ng is an estimate for two measures F; and F; , the
following is intended: there are sequences {k7,,} and {ti,} satisfying (1.4)—(1.6)
where convergernce is quadratic mean in (1.4) holds for both R; and R, or equiva-
lently the sequence of functions

(2.12) Tn(N) = 22 kink(tim , N)

converges to ng (A\) in Lz(F1) norm and in Ly(F,) norm.

TueoreM 1. (i) Let A be a countable union of intervals on which dFy(N\)/dF
exists and 1s continuous except for a countable number of discontinuities. Consider
a sequence T for which the following are satisfied. (ii) There exist estimates n; (\)
unbiased and efficient for (F:, ¢) ¢ = 1, 2 for which

vi; %> Nis, ©=1,2 and Nn(A) 0.

Then if there exists an estimate ng (\) that is unbiased and efficient for Fy and F, ,
it follows that N1, and Ny must satisfy the following condition: (iii) For all B ¢ ®

(2.13) fB g dF;IS,i‘) AN (A) = cNa(B N A)
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where

[ mi 0 ar.)
(2.14) ¢ = lim

B ECCNTRYEN

Proor. Let (a, b) = B* be an interval contained in A on which dFs()\)/dF,
is continuous, then

dF2(\)

" -d_Fl— dVlTo()\) = C(T)VZTO(B*),

where

[WEOEE gy [ OOF dE0).
[wioopar, PO [roo apo

c(T) =

From Lemma 2 and (ii), since ng is also efficient for F, ,

vio % Ny, 1=1,2.
By the Helly-Bray Lemma
dF:(\) ; r f dF:(\)
" ”—(—i'FTl" dV10(>\) g »  dF: dN 11()\)'

Since Ny(A) # 0, there exists an interval B* in A such that Ni(B*) 5 0,
thus

T 2 dF,(\)
[Py mymymam I Ay
En(T)En(T) B Nx(B%

f T (V) [ dF,

The measurable sets in A are generated by intervals of this type, so (2.13) must
also hold for all B C &.

TarorEM 2. If in addition to assumptions (i)—(iii), ¢ £ 0, A = A, dF./dF,
1s bounded and

T c
viy — Nu,

then ng (\) efficient and unbiased for Fy implies ng (\) is also an efficient unbiased
estimate for Fs .

Proor. Let {&in}o, {tim}o be a sequence of simple estimates (1.4) which con-
verges to kg in quadratic mean, with respect to F; . Then for the corresponding

{nm(\)} given by (2.12)
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[ 500 = nzoop ar, = [ EEN 1oy — aoof arm)

< M [ |50 = nEOF AR -0,

where M is the bound of dF./dF, . Thus(1.4) also converges to an estimate which
corresponds to ng (A\) with respect to F, .

L man [P
Eon(T)  Ew(T)Ex(T) /’ [ng()\)|2 ir, dF, "
—>1 dF> () dNu(\) = Nu(A) =1

dF,
This depends on Lemma 2 and the Helly-Bray Theorem in Section 11.3 of [8].

3. Rational spectral density and regression function. In this section the discrete
and the continuous parameter stationary process will be considered. Thus

(3.1) £, N) = (2m) %™,
(3.2) ‘A = [-—-1r, ]
for the discrete parameter process, and

(3.3) A= (—w, )

for the continuous parameter process, and the representation (2.1) is given by
(1.14) and (1.15), respectively. The case of C” half-infinite will be considered
first. For the discrete parameter ¢ and T are integers, and

(3'4) CT=(T)T_1)"');
for the continuous parameter
(3.5) C" = (—w,T).

It will be assumed that the spectral densities f(2) and f(\) are positive rational
functions where for convenience in the discrete parameter case the density will
be treated as a function of z = ¢™. The densities can be factored

(3.6) f(z) = |F(2)],
(3.7) fO) = [FOV)[

For the discrete process F(z) is a quotient of two polynominals each of the
same degree and having zeros inside the unit circle (|z| < 1); for the continuous
process F()) is a proper rational function and has poles and zeros in the upper
half-plane (9A > 0). (See Doob [1], p. 502 and p. 542.)

‘The regression function that will be considered has the form

(3.8) o(t) = 2 ete™, t=0
y=1
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where )\, is complex and
(3.9) max, R(7Ay) = a = 0 and ¢, = 0.

The exact form of ¢(¢) for ¢ < 0 will be seen to be immaterial for questions of
efficiency as T — «. For the discrete parameter case ¢(t) for ¢ < 0 must be such
that the sum

o0

(3.10) B(z) = 2 2 (1)

converges to a rational function in a ring
(3.11) a < lg] <b.

Similarly, in the continuous case the integral
(3.12) o) = [ M) d

must converge to a rational function in the strip
(3.13) —b<aNA< —a

In this case it will also be assumed that ®(\)/F()) is a proper rational function.
For any given degree e and ¢(t) given by (3.8) for ¢t = 0 it is always possible
to define (%) for ¢ < 0 so that the degree of denominator of ®(A\) exceeds that
of the numerator by e and hence ®(\)/F()\) is proper if the net degree of 1/F(\)
is less than e. In each case the terms of importance in (3.8) are those for which
9(4\,) = a and among these the ones for which r, is a maximum. The index of
these terms will be indicated by @ = 1, -+, n. The functions ®(z) and ®(A)
can then be expanded as follows:

+
a;z
(3.14) ¥(z) = ;; ;=Zo et
where
ha
20 = €
(3'15) ) ' ‘za‘ = a, o = 1’ LM,
|2« <@ or =b, a=n+1,--,m,
and
(3.16) Ban = By = rz%;
(3.17) a(\) = ;_; ,Z,:, .- )\ )m,
gka':_a, a=1’...’n,
(3.18)
9\ > —a or < —b, a=n+1-,m,

(6.19) Bor = By = r!¢a(_7:)r+l'
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Equation (2.2) can be written

1 t—1z T/ 2 5 _ _
(3.20) (2'_“)%; f;"l:l z P (Z)lF(Z)l dz = ¢(t), t = T, T 1, ey,
where
T
(3.21) 7(z) = ), 2 ',
t=—00
and
(3.22) @m [ MFMFENF D = o), - <t=T,
where
(3.23) BT(\) = k"e™, —0 < ¢ ST

Under the assumptions made these equations can easily be solved by the Wiener-
Hopf technique. (See, for example, [14] p. 313.) Solutions are given by

e -t -1 2(w)
(3.24) ®7(2) {20 ) 2_:@,2 741,,,,=ecw F(w) dw

and

1 o 77 s ®(w)
3.25 @T )\ = ——— —_— d dt,
(3.25) Ty [we L_ice T do
where
(3.26) 0=<a<c<bd

Equation (3.23) can be written as an integral

(3.27) T(\) = '[T e ™MKT(¢) dt

if K”(t) is permitted to include delta functions and their derivatives. Formulas
for the estimates themselves will be given later.

For the case of C” half-infinite the “best” estimate k", which is clearly efficient,
will be considered. For this estimate n”(\) is given by (2.7). For a given spec-
trum f;, the measure N,; and an asymptotic expression for f|nf;(N)[*f:(\) dA
must be obtained in order to apply the theorems of the previous section. These
can be obtained by a straightforward but somewhat lengthy calculation and
will be given without proof.

LemMA 3. Forthe discrete case, a > 0 and a sequence T — o such that ¢* ™

“‘)la,

(('IJT "I)T) L ¢a¢5la252a25
3.28 = F) = o >0,
( ) eeTTr — o(F) ;; F(24)F(25) (2425 — 1)
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and

P’ @)} . 1 palua
@8 @0 | Fea) (e — )|

For the discrete case, a = 0 and all sequences T — =

(3.29)

(27, 87) _ L e f
(3.30) e~ oF) =5 ; Fe
and
L @e"@F@P . 1 3 -
(3.31) Otz (@7, 37) C(F)(Zr + 1) g F(z a) 6(2 )

where & is the Dirac delta function. For the continuous parameter case, a > 0 and a

sequence T — o for which ¢’ — [,
(27, @") by Papplals
3.32 —21 _~ —¢(F) = T — >0,
(3.32) g o) = 2 2 FOWF ) (iha — tg)
and
@"WFMP . 1 3
(8:33) o G |5 Fod =)

For the continuous case, a = 0 and all sequences T —

(", 87) ol e
(3.34) T o(F) = @r+1) a; IF(\e) =0
and
33 WO 1 e

@ e ahGr T 1) & T0W)

where 8 is a delta function.

All integrals involved here can be evaluated by contour integration in the
complex plane. Simplifications occur due to the fact that terms contributed by
poles at the z, and A, for « = 1, - -+, n dominate all others of #(z) and ®()\)
as well as those of 1/F(2) and 1/F(X).

THEOREM 3.

(i) For a > 0 and a sequence T — o« for which ' ™™= — 1, , there exists an esti-
mate efficient for spectral densities fi and fs if and only if

n

Pa la Ra
Fz(?«')l c(Fy) a=Zl Fy(22) (2« — 2)
Fl(z)' (Fz) z ‘Pa‘la Za
a=1 F1(24) (2« — 2)

(3.36)
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for the discrete parameter process, and

n al

) D LN

(3.37) FN)| _ () | & Falha) e — N
' B0~ ) [ e
e i) e — M)

for the continuous parameler process.

(ii) If this condition is satisfied, then any estimate that is efficient for one ts
also efficient for the other.

Proor. Under the assumptions of this section dFy(N)/ dF1 = fo(N)/fr(N) is
continuous and 4 = A. For the discrete process f2(z)/f1(z) is always bounded;
for the continuous process condition (3.37) implies that f2())/fi(A) is bounded
above and away from zero. In both cases ¢ = ¢(F1)/c(F:) # 0. Thus Theorems
1 and 2 apply. Expressions (3.36) and (3.37) can be obtained directly from
(2.13) by substituting the appropriate forms from Lemma 3.

THEOREM 4.

(i) For a = 0 and any sequence T — o, there exists an estimate efficient for
f1 and f; if and only of
(338) A = ‘;‘_% i) a=1,-,m
for both the discrete and the continuous parameter process.

(ii) For the discrete parameter process if (3.38) is satisfied, then any estimate
that is efficient for one s efficient for the other.

(iii) For the continuous parameter process if (3.38) is satisfied, ko is an efficient
estimale for fy , and f2(N)/fi(\) ©s bounded; then kg s also efficient for fs .

Proor. As before (3.38) is obtained from (2.13) using Lemma 3, and Theorems
1 and 2 apply.

The stronger result of Theorem 3 (ii) is not true in the case a = 0 for the
continuous parameter processes, since it is possible to find an efficient estimate
for f, that depends on derivatives of y(¢) which will not exist for f; if the degree
of 1/f, is less than that of 1/f; . This is, of course, the case when f;/f1 is unbounded.
However, it is possible to find an estimate that is efficient for all f; satisfying
(3.38). Such an estimate is given by (3.46).

The case of C* = (0,1, ---, T) and C" = (0, T') can now be treated easily.
Under the assumptions made on f and ¢, a solution to the equation (2.2) does
exist for both the discrete and the continuous parameter process. (See, for ex-
ample, Laning and Battin [7], Chapter 8.4.) However, it will not be convenient
to use this as the efficient estimates n{; required in the theorems of the previous
section. Instead, the “best” estimates for the half-infinite interval will be com-
puted and truncated. The estimates obtained in this way are of some interest
and will be given explicitly. For @ > 0 and the discrete case let

1 0
—8  a
= Z Z My,

(3.39) (2 — ra)F(2) o=
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then
—-'1 TRNa,

(3.40) MFE" = Z y(T —t) Z Put M
a=1 (Za)

For the continuous case, let

_
(A = X)F(2)

where E.(\) is a polynominal

(3.41) = E.(\) + M.(\)

e—1

(3.42) : E.(\) = > eV
J=0

and M ,(\) is a proper rational function. Let
(3.43) m(t) = L [ ML)
then

§ y(J)( T) Z @al a(_@)

a=1 F()\a)

(3.44) .

—1 T(R)\ama ( t)

—= .
A oW

Fora =0
R T n ? tre g t
(3.45) ME" = ; y(t)a; T
and
r o~y t
. TkT ¢ate )
(3.46) i / y() 3 Pt

In all cases M " is a constant to be determined so that the estimate is unbiased;

that is, M7 is given by the right side of the expression with ¢(¢) substituted for
y(t). A straightforward computation of their variances shows that these esti-
mates are efficient for the half-infinite problem discussed above for all sequences
T — . Thus by Lemma 2

V?O 'i) Ni‘i
where 77, indicates the estimates (3.40), (3.44), (3.45), and (3.46) for f;, and

N;; are the limit measures given in Lemma 3. The asymptotic forms ¢(F;) also
hold for the 1/[[ny(\)|* dF:()) since

(‘bfa q>zT) = I/Ezo(T) (n‘lg ’ ng’o)-

Thus Theorems 3 and 4 also hold for ¢ = 0, 1, - -+, T in the discrete case and
0 = ¢t = T in the continuous parameter case.
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The least square estimate for C” half-infinite is given by

(3.47) M7k = ;w y()a(t)
and
(3.48) ME = f_ ' y(t) o(2) dt.

For the discrete parameter case, F(z) = 1 provides a bona fide convariance for
which ng (2) for the least square estimate is given by (3.24). Thus from Theorems
3 and 4 in this case the least square estimate is efficient for F(z) if and only if
(3.36) or (3.38) hold for F(z) = Fy(z) and Fi(z) = 1. In the continuous case
if the least squareestimate is efficient then by Lemma 2 »7; and »j, must converge
to the same limit. N; the limit of »;; is given by (3.33) and (3.35) in Lemma 3.
N the limit of »{; can be computed by use of Lemma 3 and the Helly-Bray
Theorem, since ng (\) is identical with ®T(\) except for a constant where $T(\)
is given by (3.25) with F(A) = 1. For a > 0 this limit is

(3.49) Nu(B) = [ 10| % IPLL >\)| i,

and for @ = 0 by

(350)  Na(B) = [ 3 lea SO = M) i

1
Z | (24 |2 f(xa)
Thus for @ = 0 if the least square estimate is efficient for f(\) it follows that
(3.51) f(Aa) = constant a=1,-,n

An -asymptotic form for [|ng (A)[’f(A) d\ can also be found.
352) 1 [ )00 > @+ 1) 2 oa FOD/Z lea T

From this and (3.34) of Lemma, 3 it is clear that (3.51) is also sufficient. N, =
N;; for a > 0 becomes

2
Pa la

aE—O (>\a >\) ‘ a=-1 F)Ma — N |’

but this is not possible since f(A) must be proper. Thus for @ > 0 the least square
estimate is never efficient.

(3.53) ¢’f(\)
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