MARKOV RENEWAL PROCESSES: DEFINITIONS AND
PRELIMINARY PROPERTIES!

By Ronarp Pyke?
Unaversity of Washington

1. Summary. This paper contains the definition of and some preliminary
results on Markov Renewal processes and Semi-Markov processes. The close
relationship between these two types of processes is described. The concept of
regularity is introduced and characterized. A classification of the states of a
Markov Renewal process is described and studied.

2. Introduction. At the International Congress of- Mathematicians held at
Amsterdam in 1954, Lévy [1] and Smith [2] independently presented papers in
which a new class of stochastic processes, called Semi-Markov processes
(8.-M.P.) by both authors, was defined. These processes are generalizations of
both continuous and discrete parameter Markov processes with countable state
spaces. In the case of Lévy, the suggestion of this possible generalization is
credited to K. L. Chung. Also in 1954, Takédcs [3] introduced essentially the
same type of stochastic process, and applied them to some problems in Counter
theory.

A rough, yet descriptive, definition of an S.-M.P. would be that it is a stochastic
process which moves from one to another of a countable number of states with
the successive states visited forming a Markov chain, and that the process stays
in a given state a random length of time, the distribution function (d.f.) of which
may depend on this state as well as on the one to be visited next. It is thus a
Markow Chain for which the time scale has been randomly transformed.

The family of stochastic processes to be defined and studied in this paper,
called Markov Renewal processes (M.R.P.), may be shown to be equivalent to
the family of S.-M.P.’s. An M.R.P. is one which records at each time ¢ the
number of times a particle has visited each of the possible states up to time ¢,
if the particle moves from state to state according to a Markov Chain and if the
time required for each successive move is a random variable (r.v.) whose d.f.
may depend on the two states between which the move is being made.

It will be seen, after the definition of an M.R.P. has been formalized in Section
3 below, that a Renewal process (z.e., a sequence of independent, identically
distributed nonnegative r.v.’s) is equivalent to the special case of an M.R.P.
with one state. However, as will become evident in the discussions below and in
[4], the relationship between Renewal theory and that of M.R.P.’s is very much
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1232 RONALD PYKE

stronger than this fact alone indicates. Indeed, it would not be overexaggerating
to describe the present theory as a marriage of the theories of Markov Chains
and of Renewal processes. It is this close relationship which suggested the nomen-
clature, Markov Renewal process.

In Section 3, M.R.P.’s and S.-M.P.’s are defined, as well as some related
processes. Although the processes studied here have been given ‘‘constructive”
definitions, and hence are automatically separable, and have no instantaneous
states (as may the S.-M.P.’s defined by Lévy [1]), there still exists the problem
of whether or not an infinite number of transitions may be made in a finite
interval of time. This problem is studied in Section 4, where a complete charac-
terization is given of those M.R.P.’s for which only a finite number of transitions
may be made in a finite interval of time. Such an M.R.P., with only a slight
qualification, is said to be regular. It is proved that every M.R.P. with only
finitely many states is regular. Several sufficient conditions for regularity are also
given. In Section 5, an extension is made of the terminology used in classifying
the states of a Markov Chain, to cover the case of M.R.P.’s. It is shown that
the classification of any particular state in an M.R.P. is very greatly dependent
upon the classification of this state in an embedded Markov Chain.

Many papers have been written on S.-M.P.’s and M.R.P.’s since 1954, mostly
in the past two years. All papers known to this author which concern these
processes and which are not referred to in the body of this paper are included
in the supplementary references at the end of this paper, thus providing the
reader with a complete list of references on this subject.

3. Definitions and notations. Bold face letters such as F, Q, H, f, q, h, are
consistently used in this paper to denote (real) matrix-valued functions, with the
capital letters having domain (— o, «) and the lower-case letters having do-
main (0, » ). Mass functions (i.e., distribution functions whose total variations
need not be equal to one) will be denoted by capital italic letters, whereas the
corresponding lower-case letters will denote their respective Laplace-Stieltjes
(L.-S.) transforms. For example, for s = 0, f(s) = [Z, e dF (x), which may
for the present be infinite. It will be convenient to introduce the degenerate d.f.’s,
U.(z) = 1 or0, according as x = or < c. Unless otherwise stated, the subscripts
1, 7 in a matrix (b;;) or elsewhere will run through the integers greater than or
equal to 1 and not greater than m, where m, fixed, is either a finite positive
integer or plus infinity. The following convolution notation is used in this and
subsequent papers. K(t)*L(t) = [¢- K(t — y) dL(y) ift 2 0and = 0if ¢ < 0
for functions K and L for which the Lebesgue-Stieltjes integral is defined. Write
KL for the function K (- )*L(-), K® = Ug(-), K™ = K" "+K,(n = 1,2, - - +)
and K = ®_o K™ whenever the series converges.

DerinNITION 3.1. Let Q = (Q:;) be a matrix-valued function on (— 0, «©). Q
is called a matriz of transition distributions if the Q.; are mass functions satisfy-
ing (i) Qi;(¢t) = Ofort < Oand (ii) X 7y Qii(+») =1, (1 =i <m+1).

For each 7 and every real ¢, set Hy(t) = > 7 Q:;(t). With this notation, (ii)
of Definition 3.1 is equivalent to stating that every H,is a d.f.
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Derinition 3.2. The m X 1 vector A = (a;, az, -+, a;, -+-), is called a
vector of tnitial probabilities if it satlsﬁes (i) @; = 0 and (ii) Zml a; = 1.

DeriniTioN 3.3. The (J, X)-process’ is defined as any two-dimensional sto-
chastic process {(J., X.); n = 0} defined on a complete probability space
(2, ®, P), that satisfies X, = 0 a.s.,

(31) P[Jo = k] = Qg
and
(32) PlJ.=kXo=2|Jo,J1,X1,J2,Xs,  , Jna, Kol 2 Qo (@)

forallz e (—w, ©)and1 =k <m + 1.

Set S, = Z,_,o X, forn = 0. The (J, X)-process defined above is closely re-
lated to a Markov process as shown in

LemMA 3.1. The two-dimensional (J, S)-process is a M arkov process, and the J-
process is a Markov Chain. In particular for 1 £k <m + 1,n > 0

(3-3) P[Jn = k, S, = Yy l J01 Jl, Sy y Ty Jn—l, Sn~1] = QJ,,_,,k (y - Sn—l)
and
(3.4) PlJn=k|Jo, Jr, -+, Jnaa]l B Qupy w(F ).

Proor. That the J-process is a Markov Chain satisfying (3.4) is an immedi-
ate consequence of (3.1), (ii) of Definition 3.1 and the Lebesgue monotone con-
vergence theorem applied to (3.2) when x — -+ «. That the (J, S)-process is a
Markov process is implied by (3.3) and (3.1). To verify (3.3), write the left-
hand side of this expression as

PlJ, =k, Xa y_Sn—llJO,JI;SI,"’;Jn—l,Sn—1]~

Since the conditioning o-field of this conditional expectation is equal to that of
the left-hand side of (3.2), and since this o-field is generated by a finite number
of r.v.’s it is known that a conditional probability distribution (as defined by
Doob [5], p. 26) exists, by means of which it is easily seen that (3.2) implies
(3.3).

Because of (3.4), it is natural to define p;; = Qi;(+ =) and P = (p;;). By
Definition 3.1, P is a stochastic matrix. Furthermore, if p;; > 0, define F;; =
07 Q:; , while if p;; = 0 set Fy; = U, . (Actually, when p;; = 0, F;; may be
chosen arbitrarily. There is some notational advantage, however, in choosing a
d.f. which has all moments finite, but the particular choice of a degenerate d.f.
has no special merit.) Set F = (F;;). For convenience define J., = . Further-
more, introduce the following notation for moments.

by = [ 1ars,  we= [ )
(3.5) °t 0 3
ol = f (t — b)? dF (1), o = f (t — no)? dH.(D).

3 As a convenient abbreviated notation, stochastic processes will be denoted by the
letter(s) used to designate the corresponding r.v.’s.
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The following easily verified consequences of the above definitions will be
useful in later discussions.

PX, < z|Jo, +*+, Jua] = Hs,_,(2),
PlJn=3j1Jo, + Jaal = Prari>
PIX. S 2| Jo, -+, Jul = Frpysn(a),
(836) PXoy Sy, Xy S 20, , Xy S 2| Jn;n = 0]
=PXn St1, -, Xny S 2| Jo, J1,y o0y Tngl

k
= H Fy 100, (2:)
i=1 £ 1]

for0 < m < --- < m, all equalities holding with probability one. It follows
from the last two relationships that X,, , X»,, : -+, X», are mutually condi-
tionally independent given Ja,—1, Jny , ** * 5 Jng—1 5 Iy, (€.g., ¢f- [6], Definition 3).

In Renewal theory, the basic process studied is that which gives the number
of partial sums or renewals in the intervals (0, ¢] for all £ = 0. The natural
analogues to this for the present theory are the counting processes defined now.

DerintrioN 3.4. The integer-valued stochastic processes {N(¢); ¢ = 0} and
{N;(t); t = 0} are defined by N(¢) = sup {n = 0: S, =< ¢} and N,(¢) = no.
of times Jx = jfor 0 < k < N(¢) + 1.

Notice that without added restrictions on m and/or Q, N(¢) may be infinite
with positive probability. Notice also that the counting functions N; are defined
S0 as not to record the value of Jy . Setting N(¢) = (N1(t), N2(2), -+, Nj(t),
---), the stochastic process {N(¢); ¢ = 0} is called a Markov Renewal Process
(M.R.P.) determined by (m, A, Q). Clearly N(t) = D> 71 N;(t) as.

Related to an M.R.P. is the stochastic process defined now which simply
records the state of the process at each time point.

DerintTioN 3.5. The Z-process, {Z; ; t = 0} defined by Z; = Jx(s is called a
Semi-Markov Process (S.-M.P.) determined by (m, A, Q).

Let us introduce some additional vocabulary to facilitate later discussions. We
shall say that a “transition” of an M.R.P. has occurred at each of the time
points Sy, S1, Sz, -+ . The process (either an M.R.P. or an S.-M.P.) is said
to be “in state 7" at time ¢, if, and only if, Z, = 3.

As defined in Definition 3.4, an M.R.P. is a vector-valued process (infinite
dimensional if m = o). It is clear that one could construct one-dimensional
processes that are probabilistically equivalent to the N-process. For example, the
Y-process defined by ¥, = j + 1 — 27" on the set [Jw@-n = J, 0 = n <k,
Jnw— # j) and = » on the set [N(f) = «] may be shown to be equivalent to
the N-process, since it records both the state of the M.R.P. and the number of
preceding consecutive transitions to state ¢ for each ¢ > 0. For most discussions,
the r.v.’s N;(t), and especially their expectations, play the central role, as does
N (¢t) for the special case of a Renewal process, namely the case m = 1. However,
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the Y-process representation serves to emphasize the relationships between an
M.R.P. and an S.-M.P. The Y-process is always an S.-M.P., and is called the
associated S.-M.P. of the given M.R.P. It is equal almost surely to the Z-process
if and only if, p;; = 0 for every state ¢ which can be reached with positive proba-
bility. Otherwise the Y-process always has an infinity of states regardless of the
value of m. It follows from this Y-process representation of an M.R.P. that,
theoretically at least, any results about an M.R.P. may be derived from theorems
concerning S.-M.P.’s. It is, however, both convenient and practical to keep these
two kinds of processes distinct, and to use the process most natural for a given
problem. For computation of moments of recurrence times (cf. [7]), it is natural
to work this out for M.R.P.’s since most applications involve processes in which
a transition from a state to itself is possible. It should be observed that although
an M.R.P. has a finite number of states, the associated S.M.P. will in most ap-
plications have an infinite number of states, as is the case, for example, for a
Renewal process (m = 1). On the other hand, for problems concerning the limit-
ing stationarity of a given M.R.P., transitions from a state to itself play no
essential role. One may then, without loss of generality, work with the related
matrix of transition distributions Q* = (Q¥;) defined by Qr: = Qi if pii = 1,
Qf = 0if pi < 1and Qf; = Q51 — Q] if 4  j and pis < 1. One may
verify '

LemmA 2. Every S.-M.P. determined by (m, A, Q) has the same famzly of joint
d.f.’s as every S.-M.P. determined by (m, A, Q¥).

Any S.-M.P. determined by (m, A, Q*) is called a corresponding S.-M.P. of
the given M.R.P.

When m = 1, a Markov Renewal process becomes a Renewal process, the
theory of which is extensive (¢f. the survey paper on Renewal theory by Smith
[8]). When the transition distributions are of the form Q;; = p;;U, for all ¢ and
j, the Markov Renewal process becomes a Markov Chain, and in this case is
equivalent to its corresponding S.-M.P. by virtue of the constant transition
times. Moreover, a continuous parameter Markov process with m states, all of
which are stable, is a special case of an M.R.P. (in fact, of an S.-M.P.) for which
the Q;; are of the form

(3.7) Qii(t) = pijmax (0,1 — ™) (—o <t< »)
for constants A\; > 0, and p;; = 0 for every <.

4. Finiteness of N(f) and regularity. It may easily be deduced from the con-
structive definitions of an M.R.P. and an S.-M.P. given in Section 3 that they
are separable and that almost all sample functions of the Y-process, and of the
Z-process, are step-functions over an interval of the form [0, L) and identically
equal to infinity over [L, « ), where L > 0 is a possibly infinite r.v. which is a
Borel function of the Y-process. Clearly, the sets [L < «] and [N(t) =
t = L] differ only by a set of measure zero. It is important to be able to char-
acterize those M.R.P.’s for which L. = «, or equivalently, those for which
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N(t) < o for all £. We shall first verify the intuitive result that in the case of
m < o, the (a.s.) finiteness of N(¢) is always true.
LemMA 4.1. If m < o, then for all states 1,

(4.1) PIN(t) < o, forall t= 0] =

Proor. By Definition 3.4, N(t) is nondecreasing. It suffices, therefore, to
prove that P[N(t) < « | Zy = ¢] = 1for each { = 0, and for every ¢ for which
a; > 0. Suppose a; > 0. By Definition 3.4, (3.3) and (3.4) one obtains for
t=0

PIN(t) 2 n|Z, = 1] = P[Sn = t|Jo = 1]

n—1

D % Qaje; (D)

Sn,i 5=0

> {fI p} v Faeya(0)

8nyi \I=0

where * denotes convolution of the indicated d.f.’s and where
(42) 8ni={(a0, 1, " ,n):0=1,; aninteger, 1 < a; T m(1 £j =< n)}

is the set of all paths of length n + 1 of the J-process for which Jo, = 7. Define
F = max; ; Fi; . It is well known that for mass functions F, , F» , Gy and G: for
which F; < G, and F; £ G», one has FixF; < G1xG, . Consequently, it follows
from (3.6) that

n—1

PIN(W) 2 n|Z =i £ FP0) 2 I pejesn = FO(0).
Sn,i J=0
Since m < o, one has by Definition 3.1 that F(0) = 0 and so for ¢ > O,
F™@#)—>1 as n— 4.
Any d f. F satisfying F(0) = 0 which is an upper bound for every F,; , would
have sufficed in the proof of Lemma 4.1. An alternative choice of F' which has a
more intuitive interpretation than that used in the above proof is

F=1-1]0=Fy,
4

the d.f. of the minimum of a family of independent r.v.’s, one corresponding to
each d.f. F;; .

A consequence of Lemma 4.1 is that almost all path functions of a Y-process
with m < « are step-functions over [0, « ), as is also true for the corresponding
S.-M.P.

Consider now the case of unrestricted m. For this case, it is necessary to im-
pose restrictions in order to insure the (a.s.) finiteness of N (t) To see this, the
simplest example is the degenerate one for Which Qjiyn = U,—;(+)(7 = 1) and
all other Q” = 0. For this example N(t) = n, whenever 1 — 27" < ¢t < 1 —
27" for n = 0, while N(¢) = «, whenever ¢t = 1. That is, L = 1(a.s.). In
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what follows, a necessary and sufficient condition for the (a.s.) finiteness of N (¢)
for every ¢ = 0 is given, as well as several sufficient conditions which are ap-
plicable in the more common situations.

For any ¢ > 0, define the truncated moments by = [itdF;;(t). Clearly
bij = limg,e bﬁj-). Define the family of integer sequences

Si={(aw, 1, " )ian=11=Za; <m-+ 1(j = 1)}.

DeriniTioN 4.1. A state ¢ of an M.R.P. determined by (m, A, Q) is said to
be regular-A if either P[(Jo, J1, ---) €8] = a; = 0, or a; > 0 and there exists
a measurable subset @ C §; such that P[(Jo, J1, -++) e @ | Jo = ¢] = 1 and
such that for every (a0, o1, ---) € @ and for every ¢ > 0 at least one of the
series

0

(43) jzo: [1 - F“:‘“i+1(c)]7 JZ_(:) bt(rcj)aj+l
diverges. An M.R.P. determined by (m, A, Q) is said to be regular-A if each of
its states is regular-A. If these properties hold for all initial distributions A,
the state or the M.R.P. will be called regular. Since whether an M.R.P. is regular
or not depends only upon the nature of Q, we shall alternatively speak of Q as
being regular.

It would have sufficed in the above definition to have required the divergence
of one of the series in (4.3) for only those sequences in @ for which pg;a;,, > 0
for every j. This is so because of the convention made earlier, that whenever
pi; = 0, F;; = U, and hence b§§-) = 1> 0forall ¢c = 1. It is shown in the fol-
lowing theorems that the concepts of the above definition may be used to char-
acterize the (a.s.) finiteness of N(¢).

TureorREM 4.1. For any given state © of an M .R.P. determined by (m, A, Q),

(4.4) PlJo =14 N(t) = o forsome t=0]=0

if and only if © is regular-A.
Proor. The theorem is obvious whenever a; = 0. Assume, therefore, that
a; > 0. For any (ap, a1, **+) €8;, one can show that
P[N(t) = © |Jk =ak,k20] =11mP[Sn§ tle=ak,k 20]

n-»>00

0

(4.5) = % Fajua(t)
j=0

by the last relationship of (3.6). It is known, and easily verified, that for non-
negative r.v.’s Kolmogorov’s Three-Series criterion (¢f. [9], p. 236) for a.s. con-
vergence of a series of independent r.v.’s, becomes a ‘‘two-series” criterion,
namely, “If {V, : n = 1} is a sequence of nonnegative independent r.v.’s, then
the series 2o V. < « (a.s.) if, and only if, for some finite ¢ > 0,

iP[Vn >¢] < », and iE[min(V,,,c)] < .

n=1 n=1
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Furthermore, if the series does not converge a.s. then it diverges a.s.” Now (4.5)
implies that with respect to the indicated conditional probability measure, the
S.’s are representable as partial sums of independent nonnegative r.v.’s. There-
fore, by the above version of Kolmogorov’s theorem, one has that

(4.6) * Foja; ,(8) =0 t=0)
i
if, and only if, for all ¢ > 0, at least one of the series

DPXa>c|Ji=a,k20, 2 Emin(Xa.,c)|Js=ox,k=1]
n=1 n=1
diverges, which is easily checked to be equivalent to specifying that at least one
of the series given in (4.3) diverges. Therefore, if state ¢ (a; > 0) is regular-A,
there exists a set @ C 8, of conditional probability equal to one, such that for
every (ao, a1, -+ ) € @, (4.6) is satisfied, and hence by (4.5)

PIN(t) = » | Jo =14] =0,
thus verifying (4.4). Conversely, if (4.4) is satisfied, then

0=P[N({) = o |Jo=1] = E’[ *OFJ,J““(t) | Jo = ’L]
Because of the nonnegativeness of the integrand, this implies
Pl: * F"w’n+1(t) = OlJo = i] = 1.
n=0

Consequently, in Definition 4.1, one may choose @ C 8; to be the set of all
a-sequences satisfying (4.6). Hence, state ¢ is regular-A.
CoOROLLARY 4.1. For an M.R.P. determined by (m, A, Q),

PIN(t) < ©» forall #] =1

if, and only if, it is regular-A.
CoOROLLARY 4.2. For a given m and Q,

PIN(t) < ©» forall & =1

for all choices of a vector of initial probabilities if, and only if, Q is regular.

The foregoing theorems give a complete characterization of those M.R.P.’s
having almost all sample functions equal to step-functions over (0, «). In
many practical situations, due to additional assumptions being stated, it is not
necessary to check completely the conditions for regularity as given in Definition
4.1. In many instances, weaker sufficient conditions are available, and possibly
are more easily checked. Some of these are given in the following discussion.

The simplest sufficient condition is a consequence of Lemma 4.1 namely that
if m < o, then the M.R.P. is regular.

It is also easily shown that if for each a-sequence in a subset @ C 8; of (con-
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ditional) probability one, there exists a finite M > 0, such that Fa;q;,,(M) = 0,
then state ¢ is regular. A particular application of this is to Markov Chains over
discrete time, of which all states must, therefore, be regular.

If D% baja;,; < ® onsome set of a-sequences in §; of positive (conditional)
measure, then ¢ is not a regular state. This is a simple consequence of the fact
that the convergence of the series of expectations of a sequence of independent
r.v.’s, implies the convergence (a.s.) of the series of r.v.’s.

If for every a-sequence in a subset @ C 8; of (conditional) probability one,
either D 2 Oajaj < ©, or there exists a finite 4 > 0 (possibly depending on
the sequence) such that Fo;a;,,(M) = 1 (j = 0), then state ¢ is regular if and
only if D 2o bajaj,; = o for every (ao, a1, ---) & @ This again is a simple
consequence of known results on sums of (positive) independent r.v.’s (cf. [9],
p. 236). :

As a special case of the above, consider the following sufficient condition. If
for every a-sequence in a subset @ C §; of (conditional) probability one, either
ppa Ohjaj < ®, or there exists a finite M > 0 (possibly depending on the
sequence) such that Foq; (M) = 1 (j = 0), and there exist two real sequences
{8}, {mj} of positive numbers such that ) 5 8;9; = « and Foja; (8;)) =1 —1n;
(7 = 0) for every (ap, a1, ***) € @, then state ¢ is regular. This follows immedi-
ately from the preceding since under these conditions ba;a;,, = 8;7; . This con-
dition is a corrected version of one due to Smith [2] (see also [10]). (When reading
[2], the reader should note the different meaning of the word regular as it is used
there.)

Consider now a condition designed primarily for continuous parameter Markov
processes with an at most countable number of states. If there exists a set
{Nij: 1 £ 4,7 < m + 1} of finite positive numbers such that for every a-sequence
in a subset @ C 8; of probability one, Fa;q;,,(t) = 1 — exp (—N\ajq;,,t) for all
t = 0, then state ¢ is regular if, and only if,

(4.7) 2 Najajin =

J=0

forall (o, a1, *:+) € @ That regularity implies (4.7) is immediate. It suffices to
show that (4.7) implies the divergence of one of the series in (4.3). This is best
seen by simply evaluating the series (4.3) to be

j=ZO exp ( _c}‘aiai.).l),

;{AZ}W“[I — exp (—CNajaj,g)] — cexp (—Chaja;,1)}-

Assuming (4.7), one has that if the first series converges, then for j sufficiently
large 1 — exp (—CMAajaj,,) > %, and so the second series must diverge. For
M\i; = \;, one obtains the known result for Markov processes, and if, moreover,
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one has p; ;41 = 1, the above is the well known result for pure Birth processes
(¢f. [11] p. 349, [5] p. 271 and [12] p. 406).

Lastly, we mention a sufficient condition which is in terms of the underlying
Markov Chain. If state ¢, considered as a state of the J-process, a Markov Chain
by Lemma 3.1, is such that with (conditional) probability one, the J-process,
starting in state ¢, will reach a recurrent state (¢f. [12] p. 353), then state ¢ is
regular. To see this let 7 (possibly equal to 2) be the first recurrent state that is
reached, and suppose it was reached at the negth transition (no may be zero).
Let ny, ma, - - - be the successive integers n at which J, = j. Set T, = S,, and
Tr = Su, — Sn,_, - By assumption, the r.v. n, are finite a.s., and hence, so are
the T)’s. Furthermore, { T : & = 1} forms a Renewal process and oY oy T =
(a.s.). Since D21 X, = D20 T (as.), the former series diverges and hence
N(t) < » (a.s.) for every ¢, as required.

6. Classification of states. In this section, the states of an M.R.P. will be
classified in much the same manner as is done for Markov Chains, the terminology
of the latter being retained. The reader is referred to Feller [12] and to Chung
[13] for material on Markov Chains. To facilitate the definitions to follow, it is
assumed that for all M.R.P.’s considered below, every initial probability is
positive. Consider the notation defined, for all 7, j and ¢ = 0, by

{P[Zt=jlzo=¢] if t=0
(5.1) P(t) =

if t<0

PIN;(t) > 0| Zy =1 if ¢=0
(5.2) Gy = (T > 0120 =] f

(0 if t<0

and let the moments (possibly infinite) of G;; be denoted by u; . According to
these definitions, P;;(¢) is the probability that an M.R.P., initially in state 2, is
in state j at time ¢, while G,; is a mass function representing the probability
distribution of the time (first passage time) until the next transition into state
7 of a process which is initially in state ¢. Notice that when ¢ = j, this definition
does not require the process to leave state ¢ during the first passage time. ui; will
be called the mean recurrence time of state 7.

DrrinITION 5.1. (a) States ¢ and j are said to communicate if, and only if,
either G;;( 0 )Gj;(o) > 0ori = j.

(b) Communication is an equivalence relation, and the disjoint equivalence
classes are called classes and are denoted by C; (whenever 7 ¢ C;).

(¢) An M.R.P. is said to be ¢rreducible if, and only if, there is only one class.

(d) A class C;is said to be essential (or closed) if, and only if, for all j ¢ C; and
forallt = 0, D kee, Pis(t) = 1.

(e) State ¢ is said to be recurrent (or persistent (Smith [8]) or ergodic (Lévy
[11])) if and only if G;( ) = 1, and is said to be transient otherwise.

(f) State ¢ is said to be null recurrent (weakly ergodic (Lévy [11]) if, and only
if, it is recurrent and p;; = . State ¢ is said to be positive (ergodic (Feller [12]),
strongly ergodic (Lévy [11])) if, and only if, it is recurrent and p;; < .
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As should be expected, the properties defined here for M.R.P.’s are very
closely related to those of the corresponding Markov Chains (¢.M.C.) deter-
mined by the same m, A, and P, namely, the J-processes. This is illustrated by
the following theorem.

TaEOREM 5.1. For a given ML.R.P.: (a) state 1 s recurrent (is transient) [com-
municates with state jl, if and only of state ¢ is recurrent (¢s transient) [communicates
with state ] n the c.M.C.; (b) a class s essential if and only if in the ¢. M.C. 4t s
essential; and (c) of m < o, then state © is positive if and only if state ©, in the
¢.M.C., is posttive and n; < » foralljeC;.

Proor: (a) From (5.2), it follows that

(5.3) Gij(0) = P[J, =7 forsome n > 0]|J, = 1]

This relation suffices to verify (a) since the properties of recurrence, transience
and communication involve only the quantities G;;( « ), and since (5.3) shows
that these quantities are identical to the analogous quantities of the ¢.M.C.
(b) is immediate. To prove (c), let S,,:,; denote the subset of (a0, -+, &) € 8n.i
for which a,, = j; where 8,,; is as defined in (4.2). Then one may straightforwardly
show (for arbitrary m) that

0 0 n—1

(5'4) Mij = Z Z Hpakak+1(baoa1 e +ban—1an)

n=1 §n.i.j k=0

Now assuming m < « and ¢ = j, one can write
. * *
(mlnk,jec,~ bkj)#u: S pi = (marxk'jeci bkj)l-m

where

n—1

(5'5) Zn Z Hpakak-H.

n=1  8n,i,j k=0

is the mean recurrence time of state ¢ in the ¢.M.C. Since m < o the mini-
mum shown above is positive and since m < « and 5; < o« forallje C;, the
maximum shown above is finite.

There does not seem to be any simple necessary and sufficient condition for a
positive state in the case of m = «. Examples may readily be constructed to
show that a state of an M.R.P. may be positive (null recurrent), while the same
state in the ¢.M.C. is null recurrent (positive). One sufficient condition for the
positivity of state 7 is that the state be positive in the ¢.M.P. and Diec; mi < o
The proof of this, as well as further discussion along these lines, is contained in
[7] where explicit computations of the u,; in terms of the ui; is made.
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