SEQUENTIAL x2- AND T*-TESTS!

By J. Epwarp Jackson? aND Rarpe A. BRrADLEY?
Virginia Polytechnic Institute

1. Summary. Consider a multivariate normal population with mean
v = (m, ", pp) and covariance matrix E. Let yo be a vector of constants,
X a vector of sample means based on n observations, and S, the corresponding
sample covariance matrix. The statistics considered are

(1.1) x2 = n(a& — wo) E (X — wo)’
and
(1.2) T2 = n(,& — vo)Sa'(-X — wo)’.

It is shown that probability-ratio tests for a sequential test of the composite
hypothesis,

(1.3) Ho: (v — vo)zfl(v — ) =X\
against the alternative
(1.4) Hi:(p—w)E (e —w) =N

may be based on

(1.5)  pun/Pon = [exp — n(\] — 73)/2] oF1(p/2; hixa/4)/oFs(/2; nNixX2/4)

when = is known and

(1.6)  Pin/Pon = lexp — n(\ — \5)/2] 1Filn/2, p/2; 0N Ta/2(n — 1 + T2))/
Fin/2, p/2; nTa/2(n — 1 + T3)]

when ¥ is unknown and must be estimated from the sample. The sequential
X -test is associated with (1.5) and the sequential T*-test with (1.6). oF; and
F, are respectively forms of the generalized hypergeometric function
JFo(ar, - - a6, ", ¢ ;) the second being the confluent hypergeometric
function.

It is shown that the use of these probability ratios in sequential tests resultsin
Type I and Type II errors of approximately « and 8 when these values are used
to obtain bounds on the probability ratios in the traditional way. It is also shown
that the sequential tests terminate with probability unity. Bounds on the prob-
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1064 J. E. JACKSON AND R. A. BRADLEY

ability ratios are translated into bounds on x> and 72 themselves and tables
have been prepared with more tables in preparation.

Procedures are also given to test sequentially whether or not two samples
come from populations with the same means. The x’-test is generalized to give
simultaneous sequential tests on both the means and the covariance matrix.

The average sample number functions (ASN functions) are considered and
approximations to them suggested. The operating characteristic functions
(OC functions) are difficult to investigate and essentially are only known ap-
proximately at A; and A3 .

. 2. Introduction. Modern techniques of sequential analysis were largely inspired
by the work of Wald, summarized in his book [27]. This work was motivated by
the need to cut down on the amount of work necessary in the acceptance sam-
pling of military supplies.

Wald’s procedures are based on a probability-ratio test and were largely
developed for the test of a simple hypothesis against a simple alternative. For
composite hypotheses, Wald proposed a method of weight functions but the method
is cumbersome and no method of insuring optimum weights is available. Goldberg,
as reported by Wallis [28], and Nandi [19] proposed a method of frequency func-
ttons. This method is now generally used in considering composite hypotheses
and will be used here.

The method of frequency functions was used to develop the sequential ¢-test
in the univariate case. This work was done independently by Rushton [24] [25]
and Arnold [21]. We extend these methods to the multivariate problem to obtain
the sequential T”-test and also consider a sequential x’-test. Applications are of
consequence for, in the inspection of complex items, a number of characteristics
are measured. Observations on these characteristics are often correlated and
univariate sequential methods applied to each characteristic lead to confusion.

For the method of frequency functions, observations are successive values of
the test-statistic and hence observations are no longer independent. Wald showed
that the probability-ratio test could be used to obtain bounds on the test-statistic
even though- observations are not independent, but his work on termination,
OC functions, and ASN functions no longer applies. Barnard [2] [3] and Cox [5]
have independently established conditions under which the frequency function
of a test statistic might be used in a sequential probability-ratio test and still
guarantee approximately the risks « and 8. We quote Cox’s theorem for later use.

TuEOREM. “Let X = [21, - -+ , ) be random variables whose probability density
function (p.d.f.) depends on unknown parameters 6, , --- , 0, . The x; themselves
may be vectors. Suppose that

(i) &, -+, tp, are a functionally independent jointly sufficient set of estimators
Jor 6y, -+, 6p;

(ii) the destribution of t, tnvolves 6y but not 6z, - -+ , 0, ;

(iii) w1, + -+, um are functions of x functionally independent of each other and

oftly"'ytp;
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(iv) there exists a set 8 of transformations of x = [x;, -+, x.] nio
x* = [af, -+, z¥] such that

(a) i, w1, -+, Un are unchanged by all transformations in $;

(b) the transformation of ty , - - - , t, intots , - -+ ,t5 defined by each transforma-
tion in 8§ s one-to-one;

(¢)#fTe,---,Tpand Ty, ---, Ty are two sets of values of ty , - - - , t, each
having non-zero probability density under at least one of the distributions of x,
then there exists a transformation in 8 such that if ty = T, -+ , t, = T, , then
t;k= T;ky"'yt;‘;:T:'

Then the joint p.df. of ti, Uy, - - - , Um factorizes into

g(t I ol)t(ul y sy Um, B),

where g 1s the p.d.f. of & and £ does not involve 6, .’ The proof of this theorem is
given in Cox’s paper.

The application of the theorem is straight-forward. The theorem permits fac-
torization of the sample p.d.f. in such a way that the probability ratio attempted
from the sample p.d.f.’s under null and alternative hypotheses reduces to the
probability ratio for the test statistic under null and alternative hypotheses.
The composite hypotheses have been reduced to simple hypotheses on a single
parameter involved in the distributions of the test statistics. In repetition,

(2.1) Pin/Pon = g(t1n | 61)/ g(t1n | 60)

in the notation of the theorem and where t;, is the statistic ¢ based on n ob-
servations. The sequential test is as follows:

(i) Accept H,if pln/p()n = ﬂ/(l - Ol).
(ii) Accept Hy if pin/pon = (1 — B)/ev
(iii) Continue sampling if 8/(1 — @) < P1a/Pon < (1 — B) /e

Provided that the probability is one that the test terminates, the probabilities
of error under the null and alternative hypotheses are approximately o and j
respectively (Wald [27], p. 43).

We test Ho of (1.3) against H; of (1.4) using x. in (1.1) or T; in (1.2) de-
pending on whether X is known or not. For the sequential x’-test, the probability
ratio is the ratio of two non-central x*-densities as shown in (1.5). For the se-
quential T*-test, the probability is the ratio of two non-central T*-densities as
shown in (1.6). In both (1.5) and (1.6) some simple combinations of terms
have been made to obtain the forms shown.

3. Fulfillment of the conditions of Cox’s Theorem. Verification of the conditions
of Cox’s Theorem has not been included by other authors using the theorem.
Since we have not found the necessary verifications trivial either for this paper
or others already published, we include a sketch of the required demonstrations.

Let x be the vector (x;, -+, X,) where x; is the ¢th observation vector on
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p multivariate normal variates. Then x consists of # independent, equally dis-
tributed, multivariate normal observation vectors. The vector of variate means
is u and the dispersion matrix is £ assumed known for the x*-test and unknown
for the T*-test. The sample covariance matrix corresponding to X is S, . We may
let X; = x; — woand x = (%, * -, X,) and regard x as the original observation
matrix of the Cox Theorem. Note that S, is invariant under such changes in
location.

ConbprTioN (i). A vector of sufficient statistics for the elements of u is ,X and
for y = y — wo is .X; the elements of S, and ,X are sufficient for y and =. (Cf.
Anderson [1], Sec. 3.3.3.) Define GG’ = X and EE’ = S;'. We transform so that

(3.1) Wy = AR — w) = nfALE
and
@2 W= Gy - w) = G¥

with A = G for the x*test and A = E for the T*-test. A spherical transformation
isused to transform ,y t0 x» 08T , Gin, - * ,0p-1n,X208T2 = 0,0 < ain < ,
1=1--,(p —2),0 £ ap_1» < 27. A similar transformation transforms
"tO)‘z = (9—90)2*1(3_ 90),:‘:‘1) )Q‘p—ly)‘z 2 0)0 Sa = 7ry7: =1,---,
(p — 2),0 £ ap = 2x. The transformations on .% and y and on ,% and g are
one-to-one and it follows that x; , @, - -+ , @p—1.n are a set of sufficient statistics
fOI‘)\?,al, frty Op and T,f,al,,, e ,a,,_.l,,.,S,,for)\z, 01, *°°, Qp1, =. We
associate the sets of statistics with ¢, --- , ¢, in the theorem and the sets of
parameters with 6, , - - - , 6, of the theorem; condition (i) follows.

Conprrion (ii). It was shown by Fisher [8] that the marginal distribution of
x+ involves only A and Hsu [14] and Bose and Roy [4] have the result for T3 .
Condition (ii) is met when A? is associated with 6; andx 2 or T with ¢, .

ConbprrioN (iii). To consider the third condition of the theorem, we associate

U,y Umwithx}, o+, xeegor T2y, -+, T2, . It is necessary to show that
the statistics in the sets are functionally independent of each other and of x2 ,
Ainy *** 5 Ap—1,n OF of T:; Qin,y *** ap—l,n,sn-

Condition (iii) seems intuitively ohvious. Formal proof depends on a series of
transformations. We rearrange the elements of x to yield a p by n matrix X’
with (¢, j) element X;; = %;j — pio, ¢ =1,--+,p,j =1,---,n. Let

(3.3) Y = MX
where M is the non-singular n-square matrix with jth row given by
[j_}: :j‘*)o) 70]y

the number of non-zero elements being j. The rows of Y now depend on the
sample means of the p variates, the jth row on the means of the first j observa-
tions,7 = 1, - - - , n. At the next stage we transform Y; , the jth row of Y, so that

(34) Z; = Y
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where A, = G for the x*test,j = 1,---,n,and A; = E;, E;E; = S;,j =
p + 1, .-+, n, for the T*test; S; is the sample dispersion matrix similar to S,
but based on the first j observation vectors. A spherical transformation is now
applied to each Z; . For Z;, we obtain new variables x5, @1j, - -+ , Gp_1,; With
X; = D20z = AET & or TG, au, -+, Gy with T5 = 27,21 =
7 &S7' &'. For the x’-test, through the series of non-singular, one-to-one trans-
formations sketched here, x or x has been transformed to a set of new variables
such that x}, - -+, x2_; are functionally independent of each other and of xa ,
Qin, *** 5 Gp1,n - Similarly, for the T*-test, each successive T% is a function of
one more row of X and T'Z , @yn, ** , Gp-1,n , Sx all depend on all rows of X. Con-
dition (iii) follows from these considerations.

ConpitioN (iv). We rewrite Condition (iv) in terms of the present problems:

There exists a set of transformations $ of X into X* such that:

(a)xd, -+, xi(or T%41, -+, T'2) areunchanged by all transformations in 8.

(b) The transformation of @i, -+, @p1. (and S, for the T*-test) into
ain, -+, 001, (and S¥) defined by each transformation in § is one-to-one.

(¢) If Ay, -+, Aps, (and &,) and AT, ---, A}_,, (and &%) are two sets
of values of @i, **+ , @p—1,» (and S,), each having non-zero probability density
under at least one of the distributions of X, there exists a transformation in §
such that, if a1, = Ay, -+, Gp1n = Ap_1, (Su = &,), then afy, = AF, -+,
a:—l,n = A:—l; (Sn = @:)- )

The necessary classes of transformations are

(38.5) X* = XGBG™ or X* = XEBC’

respectively for the x’- and T?-tests where B is any p by p orthogonal matrix and
C is any non-singular, triangular, p by p matrix.

We first consider the x’-test. From (3.3) and (3.4), Z = MXG and ZB =
MXGB = MX*G = Z*. The transformation from Z to Z* is orthogonal. Parts
(a) and (b) of Condition (iv) follow at once. The sums of squares of elements
in rows of Z equal the corresponding sums of squares for Z* andarex} , - - - , xa -
The transformation of Z, into Z¥ is one-to-one for each B and, since x% , a1n , -+ - ,
ap-1.» follow from a spherical transformation on the elements of Z, and the
corresponding transformation applies to Z% , we have a one-to-one transforma-
tion of @, ", Gp1n O Gin, **, Gp—im-

If Ay, - ,Ap,yand A, -+, A}_; are two sets of values of ajn, *** , Gp_1.n
suitably restricted between 0 and = or 0 and 27 as the case may be, then Z,
and Z} may be evaluated except for the scalar x, which is the same in both
cases. If these specified values yield Z, and Z} , they are related by Z¥ = Z,B
and this equation defines (» — 1) independent equations on the elements of B.
There are also p(p + 1)/2 additional equations on the elements of B imposed
through the requirement that B be orthogonal. The solution for the p* elements
of B is not unique (except for p = 2) but matrices B satisfying the requirements
may be found and this is sufficient for (¢) of Condition (iv).

For the T-test, Z}/j# = &* = ,ZEBC’ and S} = CBE'S;EBC/,
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j=p+1, -+ ,n Notethat Sk = CC’ because E'S,E = I. Part (a) of Condition
(iv) follows since
TY = j &*SF &% = j ZEBC'C''B’E”'S;'"E''BC'CB'E; &’

=i AT A = T3, i=p+ 1,
From (3.3), (3.4) and (3.5) it follows that Z} = Z,B. Given B and C, the trans-
formations of S, into S} and Z, into Z} are one-to-one and the transformation of
Z, into Z actually transforms T2, @i, -+, Gp1n int0 To, @l , -+, a¥_1 0
with T% = T3 Part (b) is thus verified. In regard to Part (c), the existence of
an appropriate B is demonstrated exactly as for the x*-test and C is defined by
S and E by &, . Hence the required transformation in § exists and Part (¢) also
follows for the T*-test.

All of the conditions of the theorem have been fulfilled for both the x*- and
the T*-tests. Hence the joint p.d.f.’s of x}, --+ , x5 or T4, - -+, T factor into
g(xn | INYE(xd , -+, xn) or g(T% | aN)(Ths, -+, T%) and pia/po. can be
written as g(xs | 7A1)/g(x% | nA3) or g(T% | nA})/g(T% | nA3).

The first of these is the ratio of two non-central x*- densities with p degrees
of freedom and non-centrality parameters n\} and n\} reducing to (1.5); the
second is the ratio of two non-central T°-densities with degrees of freedom p
and non-centrality parameters n\; and n\} reducing to (1.6).

In many situations \j = 0 and then (1.5) reduces to

(3.6) Din/Don = €™ oFy(p/2; n\Ix/4)
while (1.6) becomes
(3.7) Pin/Pon = € ™M 1 Filn/2, p/2; MAITE/2(n — 1 + T2)).
Furthermore, if p = 1, (3.6) reduces to
(3.8) Pin/Don = €™ cosh [\, Z; (x; — w)/ol
J=
and (3.7) to
(3.9) Pin/Pon = P Filn/2, 35 i /2(n — 1 4+ &)].

Equation (3.8) is equation 9.5, page 135, in Wald’s book; equation (3.9) is
equation 5 given by Rushton [25] for the univariate sequential {-test.

A referee and W. J. Hall have pointed out that Cox’s Theorem may be by-
passed through use of an unpublished theorem of Stein and the fact that x7
and T5 are maximal invariants of sufficient statistics under certain groups of
linear transformations implying that they are sufficient for any invariant sta-
tistics. This means that x% is sufficient for (xi , -+ - , x%) and T is sufficient for
(Th41, -++, Th) and the factorizations resulting from Cox’s Theorem are im-
mediate. The reader is referred to Hall [12]. We have not relied on this approach
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for reasons set forth at the beginning of this section and because the transforma-
tions involved are of interest in themselves.

4. Termination proofs. Let x» and %% be the boundary values for x5 corre-
sponding t0 pin/Pe. = B/(1 — @) and Pin/Pon = (1 — B)/a where pin/pon is
defined in (1.5).

We assert that

P(Sample Size > n) < P(x» < x5 < X») = Pa

and proof of termination follows if we show that lim,.» P, = 0. This approach
is similar to that given by Ray [23] who considered sequential analysis of variance.

Set U% = x%/n and consider the corresponding limits U% and U% . Erdelyi
et al [7] shows that

Fi(e; x) = V2, F1[(2c — 1)/2, 2¢ — 1; 44/7]
and, when this is applied in (1.5) and x% replaced by nU> , we have
Pia/Pon = F(UR) = [exp [{—n(A] — N})/2} — (n"\U3)

lﬁ’l(p 1)/2,p — 1; 2(n™\U3)Y

2y 2 2,%
+ (w'\U%) ] Fillp — 1)/2, p — 1; 23U

Intersections of the family of curves y = ¢.(U?) = In f,,(UZ) and of
y=I[8/(1 — a)]andy = In [(1 — B)/a] determine U% and U, respectively.
It can be shown that

ga(U") >0 © for P> 0
and
lim e gn(U?) = oo.
It may be demonstrated also that
gn(U) = ml{— (N = 29)/2) + (UHIOD! = )1+ 0(1/n)).
These results are straightforward, being based on the proposition that
1Fi(a, ¢; z) = [(c)/T(a)le’a" L + O(|a[™)]

given by Erdelyi. It follows that y = g,(U”) defines a family of curves starting
at y = —n(A\} — A})/2 for U? = 0 and increasing strictly to +« as U* — o.
Hence ¢.(U?) = 0 has one root and it is

= [\ + 200" + Ml/4 + 0(1/n).

The intersection of the horizontal line y = In [8/(1 — a)] with y = ¢.(U?)
occurs where

—[( = AD)/2] + (UHIAD — DN+ 0(1/n) = n'In [8/(1 — &)]
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and hence
Us = I+ 208N)! + Ail/4 + 0(1/n) = Ui + 0(1/n).
Similarly,
Us = Us + 0(1/n).

Consider U%. This is a random variable that converges stochastically to
M= (p— w)E(y — w) asn — ».If \* = Uj, the sequential process ter-
minates with probability 1. If \* = Uj , more powerful methods are required.

The work of David and Kruskal [6] suggested the following argument. Let
P; be the probability of termination of the sequential test.

Pr21—Plxa 2 xS %) 21— (6 — x) supee zn h(; p, n2?)

where h(x*; p, n\?) is the noncentral chi-square density with p degrees of freedom
and parameter of noncentrality n)\’. We show below that lim,.. (X» — x») is
finite and lima.e SUPGZ.32) h(5%; p, nA?) = 0 as may be shown by examination
of that density. Hence Pr = limg. [l — P(xn < Y =2x)]=1landPr= 11T¢
remains to show that lima.. (X% — x») is finite.

Weuse U2, U% and U% and recall that U and U% are such that g.(U%) =
In[8/(1 — )] and g.(U%) = In[a/(1 — B)]. Consider g.(U?%) in the interval
(UL, U3). We apply the law of the mean in this interval and divide both sides
by n to obtain

ln(l_ﬁ'——l—a) ’ 7

(1) 8 a ) _ galUn + 6(T% — Un)]
n(U% — U%) n

where0 = 6= 1.

vorpy _ o1 (PN *{ WFil(p + 1)/2,p; 2T }
(U = % (W) Fil(p — 1)/2,p — 1;2("11“'7\%172)}] !

o)*{ Fil(p + 1)/2, p; 2(0°N U1 1}.

. ('nz)\2 _
P\T) WFillp — 1)/2,p — 1;2\30%)Y]

But
Fi(a, ¢; z) = [T'(e)/T(a)l2 [l + O(|z[™)] and
(5 - 3]0
Now

UL, U — Ul = <(>\§)* + (7\3)*)2

and in the neighborhood of U} [in the interval (U% , U%)],
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g=(U%) _ (D — ()?
n = oo g T Oa/m)
and lim,.. [gn(U?)/n] > 0 in the neighborhood when A} > \} as required. Re-
turning to (4.1), we find that the right-hand side has a finite limit and conse-
quently n(U% — U%) = %» — x» has a finite limit.

The termination proof for the sequential x*-test is now complete.

It is well known that the non-central T*-distribution approaches the non-
central x’-distribution asymptotically with n. Then the argument above applies.
7% and T2, the boundary values for the Sequential T>-test, approach
n\: + 2003A2)F + A2)/4 also.

6. Two-sample cases. The sequential techniques discussed can also be used
for two-sample tests with paired observation vectors. Let the first population
have mean vector ™ and dispersion matrix Xy, , the second u® and s, . Suppose
further that the cross-covariance matrix is ;2. Let p = u® — u® and x; =
xP —x® i =1,.-.,nwhere x” and x{ are respectively the 7th observation
vectors for populations 1 and 2. The dispersion matrix of x is Xj; + Zge — Zpp —
=15 . Now when Xy, £ and Xy, are known, the two sample problem is reduced
to an application of the Sequential x’-test.

When the variance-covariance matrices are not-known and must be estimated,

the situation is even simpler. Again we define 4 = u® — p® and use variates
x =x* —x?. 3, + T» — Zpp — Z1. is estimated directly from the observation
vectors x; = x{ — x{?,¢ =1, - -+ , n and this problem is reduced to that handled

by the Sequential 7T”-test.

6. The ASN functions. In the planning of sequential experiments information
on the expected sample sizes (S) is desirable. Wald [27] established approximate
procedures for determining the ASN function when sequential observations are
independent. These procedures have not been demonstrated to be valid when
successive values, not independent, of a test statistic are considered.

Johnson [18] circumvented the problem by sampling additional groups rather
than additional items within a group and hence considered successive inde-
pendent values of a test statistic. This could be done for the Sequential x*- and
T?-tests but usually would require too many observations.

Rushton [24, 25], in discussing the univariate sequential {-test, reduced the
problem to a one-parameter problem by assuming that, after a number of ob-
servations, the variance was known. This led to lower bounds on the ASN func-
tion. This procedure does not seem applicable in the multivariate case because,
even if X is assumed known, we are still dealing with composite hypotheses.

A third approach is the Monte Carlo technique. This has been used for the
univariate sequential {-test and Freund and Appleby [9] have studied our tests.

A fourth method may be attempted. The method is based on the fact that,
if one ignores excesses over the boundaries at the termination of a sequential test,

(6.1) &l (pra/Pen)] = (1 — @)In[8/(1 — @)] + aln [(1 — B)/a]
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where H, is true and
(6.2)  &[ln (pin/pon)] = B [B/(1 — )] + (1 — B)In[(1 — B)/a]

where H, is true. Now, in general, In (p1./po.) will depend on n and a test statistic
T, based on the first n observations. What is needed is to express &[ln (pin/pon)]
as a function of &(n), the ASN number, (and of the parameters involved) and
to then solve (6.1) and (6.2) for &(n) and &(n), the required ASN- numbers
under H, and H, respectively. But a way of doing this has not been found for
any sequential tests of composite hypotheses so far as can be ascertained by the
authors. Bhate, in unpublished work, proposed approximating to &[In (pix/Pox)]
by replacing T'» and » in In (pin/pos) by &[T, | n = &(n)], the fixed sample-size
expectation of 7', given that n = &(n), and &(n) respectively. The expectation
&[T, |n = &(n)] is obtained under H, for (6.1) and under H, for (6.2). This
procedure is seen intuitively to give a “central value” for the distribution of
In (p1n/Pe.) and, upon appropriate substitutions in (6.1) and (6.2), to give
equations in &(n) and &(n), values of §(n) under Hy and H; respectively, for
solution. The method, crude though it may appear, has been used in a number
of situations, for example, by Ray [22] for sequential analysis of variance and
most recently by Hajnal [11] for a two-sample sequential i-test.

We have tried the method for the sequential x*- and T’-tests of this paper.
Since &[x5 |n = &(n)] = (p + 7A?) | ngmy and, using pin/pon in (1.5), we ob-
tainéd the equations

—3n(M — N) + In oF1[p/2; nAi(p + np) /4]
(6.3) — In oF1[p/2; nAs(p + nig) /4]
= (1 —a)n[8/(1 —a)] + an[(1 —B)/a]

and
—3n(\ — M) + InoFilp/2; nAi(p + ni)/4]
(6.4) — In oFy[p/2; nX\o(p + nA])/4]
=fn /(1 — )] + (1 — B)In[(1 — B)/al].

For brevity, these equations have been written in terms of n but solution of
(6.3) for n yields &(n) and of (6.4), &(n), both for the x*-test. For the T*-test,
let z = T%/2(n — 1 + T%) and note that

glz | n = &(n)] = (n\*/2){1 — [exp (—nr*/2)][(n — p)/n]
aFin/2, (n 4+ 2)/2; nN'/2]} amgim

following Wishart [29]. With p1./po. in (1.6), the equations for the T*-test corre-
sponding with (6.3) and (6.4) are

—3n(\ = N0) + In1Fi[n/2, p/2; n\igo(z)] — In 1Fin/2, p/2; nh&e(x)]

(6.5)
=1 = a)n[g/(1 = a)]+ an[(1l—8)/d]
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and
(6.6) —in(A\ —\0) + InFi[n/2, p/2;nA\i&(x)] — In \Fi[n/2, p/2;nN\e81(x)]
=B [B/(1 — a)] + (1 — B)In [(1 — B)/a]

where &(x) = &z |n = &(n)lha? and &i(z) = &lx|n = &(n)]haz .

Again we have left (6.5) and (6.6) in terms of n for simplicity but note that
the solution of (6.5) for n yields &(n) and of (6.6), &(n).

Solutions of (6.3) and (6.4) or of (6.5) and (6.6) do seem to provide the
desired guides on the numbers of experimental units required for the planning of
sequential experimentation. Solution of these equations can be accomplished
iteratively with a high-speed computer and, since applications are likely to be
repetitive, this need only be done initially in setting up an experimental or
control program.

The principal justification for the Bhate method of approximating ASN
numbers is that results agree sufficiently well with Monte Carlo studies for prac-
tical purposes. For verification of this, the reader is referred to the paper by
Freund and Appleby. One other study, conducted by K. J. Arnold (Natl. Bur.
Stds. [21]), is available for the sequential t-test with p = 1, A\ = 0, A} = 1.0
and @« = @ = .05. In that study 500 sets of observations were sampled for the
two values of \’; the average sample size to reach a decision under H, was 10.0
while the conjectural value was 10.7 and under H; was 11.2 compared to 9.7.
It is interesting to note that the actual a- and B-values from this study were
044 and .034 respectively, somewhat different from the intended values. Ray
[22] used this second example also but a rounding error occurs which makes his
conjectured values appear to be closer to Arnold’s results than they really are.

7. Generalized x2- and T?-statistics. In addition to the x*- and T2-statistics
already discussed, there are two others in each case which deserve mention and
complete the families of x*- and T -statistics (Hotelling [13]). We adopt
Hotelling’s notation and also drop the subscript n used on x°, 7%, S and %. The
x’-test so far considered is x4 in Hotelling’s notation and = becomes X, . Now
M= (g — w) =" (s — wo)’ becomes A5 and the sequential x’-test is for the
hypotheses,

Ho: Ny = Ny s
(7.1) \ .
H1 H >\M = )‘Ml .
The second statistic to be considered is
(7.2) xp = (n — 1) tr SE;*
for hypotheses '

Ho: X = % (or )\ = tr EX;" = A},),

(7.3)
Hl x> 20 (Or >\D = AD1'> >\D0)‘
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Usually we shall want )\f,o = p but this is not essential. x5 is distributed like x*
with (n —1)p degrees of freedom and noncentrality parameter (n — 1)\ .
xu and x5 are multivariate extensions of univariate tests based on % and s.
The sum x5 = x% + x5 is a measure of the overall variation of the sample
from standard. x5 is distributed like x* with np degrees of freedom and param-
eter of noncentrality \p = nA\3 + (n — 1)A} . An alternative form for x5 is

(7.4) xo = 2 x}
where x} = (%; — 80) 25 (x; — @), % = 1, - -+, n. x5 could be obtained by sub-
traction, x5 — x% , and S need not be computed. Logical hypotheses for use with
x5 appear to be
Ho:m\y = n\iy, + (0 — 1)AD, = 7N,
Hy:n\) = n)ful + (n — 1))3,1 = n)\f,, .
Sequential tests may be developed for (7.3) and (7.5) based on x» and x5 .
The probability-ratio statistics are respectively
Pio/Pon = 6~V ObNBOI2 oFil(n — 1)p/2; (n — 1)Np, xp/4]
oFil(n — 1)p/2; (n — 1)N\poxp/4]

(7.5)

and
¢ Mo N /2 oF1[np/2; N5, xo/4] .
off 1[’"47/ 2; nk?,o Xf)/ 4]

These sequential x*-tests are developed just as the one based on x# and would
depend on the same set of tables for values of x* and %* except that often for xi
we would have A\, = 0 and here tables are required for cases where neither null
nor non-null values of A\ are zero.

If the family of sequential x*-test were used, say, in sampling inspection, the
inspector could ascertain after each item inspected

(i) whether or not the sample means differed significantly from standard,

(i) whether or not the variation about sample means was greater than the
preassigned X, and

(iii) whether or not the overall variability of the sample is larger than should
have been expected.

Generalizations of the sequential T -test are not directly available; generali-
zations of the non-sequential T?-test were developed. T? in this paper corresponds
to T in Hotelling’s notation. T5 of Hotelling generally represents the varia-
bility in a subgroup of an experiment compared to, say, the average subgroup
variability of an experiment. Rarely would such situations occur in sequential
experimentation. Somewhat more conceivable is the situation where a sequential
T% test is run in parallel with a x2-test, the test on variances is based on previous
experience but the test on means depends only on the variability of the sample

Din/Pon =
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itself. T% and T2 are useful statistics in the multivariate analysis of variance
and could perhaps be used in sequential multivariate schemes when more is
known about the forms of their distributions. Sequential tests for the roots of
determinantal equations might also prove useful and feasible but computational
procedures would be difficult.

8. Discussion. We now discuss some problems that arise in using the sequential
methods developed in this paper.

(i) Tables. Direct applications of our sequential procedures involve compari-
son of the probability ratio at each stage with /(1 — a) and (1 — 8)/e. This
is laborious and requires evaluation of either oFi(c; z) or 1Fi(a, c; z) after each
observation. Tables of both functions are available (Jackson [15], Nath [20],
Rushton and Lang [26]) but Lagrangian interpolation of the logarithms of these
functions is still necessary in most cases. It is better to prepare tables of the
boundary values x5 and %% and T’ and T% so that only the test statistic is com-
puted in applications. Tables now completed for « = B = .05 are glven by
Jackson and Bradley [16] and show x5 , x,. , T% and T2 forp = 2 (1) 9; A8 = 0;
A = .5, 1.0, 2.0; maximum n: 60 for \} = .5, 45 for ] = 1.0, 30 for A} = 2.0.
R. J. Freund with Jackson at the Virginia Polytechnic Institute has completed
some additional tables and a report [10] has been prepared. Publication of a
separate volume of tables is contemplated when this work is complete.

(ii) Determination of Ho and H, . Specifications of values of the noncentrality
parameter A\ lead to difficult administrative decisions. For sequential tests for
means we would often take A3 = 0 corresponding to y = wo . Determination of
A? is much more difficult in the multivariate case than for the univariate case
since a p-dimensional ellipsoid related to problem specifications must be
visualized. No single rule on specifying A} can be given and each problem has
to be handled individually. Jackson and Bradley give some examples in connec-
tion with the sampling inspection of ballistic missiles and a paper showing these
applications has been accepted for publication [17].

Sequential procedures should also be extended to cover the use of one-sided
tolerances and essentially generalize the work of Goldberg (Wallis [28]).

(iii) OC and ASN functions and truncation. No explicit or even approximate
expressions yet exist for the OC and ASN functions when the hypotheses under
consideration are composite. Until such time as these expressions can be found,
we must rely on Monte Carlo evaluations for a description of these properties.
Little or no work has yet been done regarding truncation of sequential tests of
composite hypotheses. Again, until such expressions are available, we must rely
on Monte Carlo studies to show us the effect of truncation on the OC and ASN
functions.

(iv) Grouping. These techniques were originally designed for the sampling
of ballistic missiles, items which involve considerable expense. However, for a
low-cost, high-volume process, sequential sampling by groups might be preferable
to item-by-item sampling. Except for a few isolated cases like the binomial, no
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optimum procedures have been worked out for sequential sampling by groups.
The general procedure recommended by Wald, in our case, would be to take
groups of say m observations per group and compare the resultant x5 or T%
as the case may be, with the correspondmg X% and xZ or T% and TZ where n 1s
now equal to m, 2m, 3m, - - - , ete. The effect of this prooedure is to increase
the average sample number and to decrease the size of « and 8. Except for em-
pirical studies, the magnitudes of these changes are unknown but the directions
.of the changes are such that they compensate for each other to some extent.
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