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is minimized by the choice ¢ = ¢*. A design which minizes d(z,) can then be
obtained easily from ¢* in a manner described in [8]; for our present considera-
tions, we need only mention that d(z,) = [m( ¢™)]7?, which can be used to tell
us whether or not z, ¢ B.

Finally, we remark that the Chebyshev approximation problem just described
in terms of the g.’s can be rewritten as a “modified Chebyshev problem” in terms
of the original fi’s, namely, to minimize

k k
max, |[1 + ;cifi(xo)]fl(x)/fl(xO) - chif;(w)I-\

For computational purposes, it is often convenient to solve this problem by
first solving the restricted Chebyshev problem of minimizing

max, lfl(x) [fi(xe) — rt ; C; z(x)l

subject to > % cifi(xo) = r — 1, then multiplying the resulting minimum by 7
and minimizing with respect to r.
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A CONTOUR-INTEGRAL DERIVATION OF THE NON-CENTRAL
.CHI-SQUARE DISTRIBUTION

By Frank McNorty

Lockheed Missiles and Space Division, Palo Alto

The brief discussion which follows presents a contour-integral derivation of
the non-central chi-square distribution. Although this distribution is well
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NON-CENTRAL X? BY CONTOUR INTEGRATION 797

known, the particular mode of derivation in this paper may have interest peda-
gogically and may serve as an example of the utility of the contour integral
approach.

Consider the expression

(1) p=xi+ 2 +as+ - + ap,

where the z; are independent and each normally distributed, z;:n(a;, o).
The Fourier integral ¢;(¢) of the random variable z is

_ 1 it
2) ) = T gy P (1 - 2z't02)’

and the Fourier integral ¢(t) of o’ is, therefore,

1
(3) #(t) = (—].TM';E exp ( 2“02) Z a; .

The probability density function of o’ f ( 0’), is then given by the Fourier trans-
form of (3),
itr

gy 1 ° 2 1 ____..__2
@ 6 = o [ o (i) (g e (1 = 2W> “

wherer* = D %.,a}. In(4)letz = (p/7)(1 — 24ts?), which yields

[ w2 ())&

At this point, it is convenient and interesting (but not necessary) to write (5)
in the equivalent forms,

16 = (B)*(H)exp [- e+ ]

(6) © or nq p/r+ico dz
2y 1 P $(b—2) [ 1 ]

o r plr+ico .
- 2 I (%)f & dz (K even),
n=—00 g P

/r—io0

where I,.(or/q") is the modified Bessel function of the first kind, of order n.
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Since the integrand in (7) has no branch points, the integration can be per-
formed by considering the vertical path (o/r) — i to (p/r) + i, to be part
of a complex contour C in the z-plane as shown in Figure 1. Equa,tlon (7) is
then easily evaluated as

7o) = -1—2 <$>§H exp [— 2—1—2 (o + 7‘2)] Lo (Z—:)
(8) ( o )2“"‘"1
= () e[ P+ | T

=D T+ I +m)”

Since the integrand in expression (6) has a branch point at the origin, a some-
what different contour is required as shown in Figure 2. For reasons which will
become evident later, the integral

plr+ic
or dz
) fp/r—iw oxp (2 ? z) 2

will be considered, where n + (k/2) has been parameterized in the form of
A + 1. Thus,

i [exp (£2) 2% =t {[ 4 [+ [+ + [}
-0
+lim |+ Eﬂ{f + }

(10)
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It can be shown that
(11) lim = lim =0 forx > —1,
R—>w Yco R->w Ycg
(12) lim = lim =0 forx > —1,
R-»>w Y3 R-»>w Yeyp
and
(13) lim[| =0 forA < 0.
d-»0 Yej

From (10), (11), (12), and (13), the following can be written:

(p/r)+i% ' )
)8 i ) [ (= 20) 2
" /( i exp (2:72 z) pren 2 sin (\w) A exp < 508 s) poe
~ o ()
T TN+ 1) \202/
The equality in (14) is valid for —1 < X\ < 0 and, in addition, both sides of (14)
are holomorphic functions of A throughout the region —© <\ < . Therefore,
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by analytic continuation [see MacRobert [2], page 122], the equality in (14) holds
for —o < A < » and namely for the n + k/2 under consideration in expres-
sion (6).

Expression (6) can now be written as

k/2
16) = (3m) o[-+ ]
0 (p27'2/220'4)n
2 S D oy (kedd).

But (8), with % even, can be written in exactly the same form as (15). Thus,
(15) is the density function for o°, with & even or odd.
Letting ¥ = 7°/2¢" and x”* = p’/d*, (15) can also be written as

f _p_2 do? = 12y 2 o2 1 x’2 e _ _ X’2
(02> p = fx")e" dx" =3 (—2—> exp (—v) exp( —2—>
s X )" ax”
=onT(n + 3k)°
Equation (16) is the non-central chi-square distribution, and the Fourier integral

derivation of Equation (16) is different. from that usually found in the litera-
ture—see Mann [3], pages 65-68 and Anderson [1], pages 112 and 113.

(15)

(16)
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A CHARACTERIZATION OF THE INVERSE GAUSSIAN DISTRIBUTION

By C. G. Kuatrl
University of Baroda, India'

1. Introduction and summary. M. C. K. Tweedie [2] defined the inverse
Gaussian distributions via the density functions

f@;m, \) = N (2r2®)] exp [\ (z — m)z/(2m2:r.)] forz >0

=0 forz < 0.

(1)

The parameters A and m are positive. The corresponding densities reflected
about the origin, and with A and 7 negative, may also be considered as in the
Inverse Gaussian family. The characteristic function of the Inverse Gaussian
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