AN INVARIANCE PRINCIPLE IN RENEWAL THEORY'

By JouN LAMPERTI

Stanford University and Dartmouth College

1. Introduction. Let X;, X, -+, be a sequence of independent, identically
distributed positive random variables, and let S, be their nth partial sum. De-
fine a stochastic process {Y;} by letting

(1.1) Yi=t—max{S,| 8. = ¢;

{Y4} is Markovian and has stationary transition probabilities. It has been shown
by Dynkin [3] (see also [7]) that the random variable Y/t has a non-degenerate
limiting distribution as ¢ — c if and only if F(z), the common distribution
function of the X, , satisfies

(1.2) 1 — F(z) =z °L(x), 0<a<l,

where L(z) is a slowly varying function. (That is, L(cz)/L(z) — 1 asz —
for every positive ¢. These functions were introduced by Karamata in [5].)
More recently it has been shown [8] that the same is true of M /¢, where

(13) Mt = SUP;<¢ Y-,- .

These facts suggest that perhaps, if (1.2) holds, the processes {£ 'Y} converge
as § — o to a limiting process in somewhat the manner of Donsker’s tnvariance
principle [2]. The purpose of the present paper is to investigate this question.

In Section 2, it will be shown that the transition probability function of the
Markov process {£ 'Y} converges to a limit as § — «; the limit is explicitly
obtained. It follows easily that the finite-dimensional distributions of the process
also converge to ascertainable limits. In Section 3 it is then shown that the
limiting distribution of any suitably continuous path functional exists; in other
words, that an invariance principle holds. The principle tool (in addition to the
convergence of the finite dimensional distributions) is a general theorem of
Skorohod [10] which is easily applied to the present situation.

The next two parts of the paper study the limits, and show that they can be
identified with secondary processes derived from some well-known objects.
For example, let {x;} be a one-dimensional Wiener (Brownian motion) process
with zo = 0 and define

(1.4) ye =t — max {r < t|z, = 0}.

The process {y:} thus obtained is the limit process to which {£ Y} converges in
the case @ = %. This fact can be generalized to include other values of « by con-
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686 JOHN LAMPERTI

sidering symmetric stable processes and their “subordinators” (Section 4), or
by considering a certain class of diffusion processes (Section 5). Some corol-
laries are pointed out in the concluding Section 6.

2. Finite-dimensional distributions. We first record the fact that

. Ygt X sin T min(lz/t) —a a—1
(2.1)  lim Pr T Sz)=FiZ)= f w (1 — w)* du
0

t->00 t K
provided (1.2) holds [3]. The distributions F,( ), 0 < a < 1, are called “gen-
eralized arc-sine laws” and were discovered by E. S. Andersen in connection
with quite different problems in fluctuation of sums of random variables. The
next step will be to study the transition probabilities of the process {Y}:
THEOREM 2.1. If the distribution of X; satisfies (1.2) and if y > 0, then

) () ey

+2 [ [ - ]( v ) = 5
yh LA —wl\y + wt Pe 1Y, 2.

(Hu) =0ifu <0,1ifu = 0,If y = 0, p{*(0, z) is of course defined by the
right side of (2.1).)

Proor. It is sufficient to consider the case ¢ = 1, for (2.2) is obtained from
that case by a change of variable. Our starting point will be the relation

Pr(¥isa|¥o=y = LT ELED

23 ! F(y + u)
+L=0Pr(Yg_u§x‘Y0=0)d'I—;T(y—)‘.

lim Pr <~2—E—t <z

f>0

(2.2)

H(x —y —§)

This is clear since the first term represents the event that no partial sum falls
between 0 and &, while the second term is of the familiar “renewal”’ type. If
z and y are replaced by £ and £y, a change of variable is made in the integral,
and (1.2) incorporated, (2.3) becomes

Ye o |Yo_ >= y YLty +1] .

o) Pr( =203 (1 +y) LGy H@-y-1
' _ ! Yiaw x _ w\ * Llg(y + u)]
fu=oPr<£(1—u)§l—uY°~O>d<1+y> __L(Ey) .

Using (2.1) and the definition of a slowly varying function, we see that con-
vergence of (2.4) to the limit in (2.2) is at least formally indicated.

To justify the convergence we use the following elementary

LemMa. If gu(x) converges uniformly in [a, b] to a continuous limst g(x), and
if Fu(x) are distribution functions converging to a distribution F(x) at each con-
tinuity point, then

b b

(2.5) limf gn(z) dF () = f g(z) dF ().

n->0 Ya
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The integral in (2.4) satisfies all the assumptions of the lemma except possibly
the uniform convergence of g, to g; establishing this will complete the proof.
Convergence of the integrand in (2.4) to Fi_.fz(1 — u) 7! is certainly uniform
in a neighborhood of 4 = 1 for any > 0, as the probabilities in question are
unity when z/(1 — u) = 1. But the limit (2.1) holds uniformly in z for ¢ = 1,
simply because of monotonicity and the continuity of Fi_.. It follows that

Pr<Ym_“) <_Z Y0=0)—Fl_a( i )
1 —u

1 —u) "1 —u
must be small uniformly in » if £ is large and u is bounded from one. Hence
convergence is uniform for % ¢ [0, 1], and Theorem 2.1 is proved.
It is not surprising that the finite dimensional distributions of the process
{£7'Y 4} also converge as £ — «:
TuroREM 2.2. If (1.2) holdsand 0 < & < -+ = tu, then

(2.6)

1imPr<Zg—t1 < m, ---,Y;” Sz |Y = O)
exists and is obtained by iterating the transition function® iy, z).
Proor. In case n = 2, the statement of the theorem becomes

Zs=y)dPr(Z;ﬂ§y|Yo=0>

lim ZIPr<YE(‘T’_“)§x2 ;

E>0 JO

@7 )
= fo pi24 (y, @) dpsP (0, ).

The justification for the interchange of limits is very similar to that in our earlier
result, but we will use a slightly modified form of the previous lemma in which
it is required only that g, — ¢ uniformly in any interval [a + ¢, b], ¢ > 0, pro-
vided that g, are uniformly bounded and that F(z) is continuous at a. We
further note that even if g(z) has a jump at a continuity point of F(z), (2.5)
remains valid. To apply the lemma, in this form to (2.7), we only need to show
that the limit (2.2) holds uniformly in y in any interval 0 < e = y = 2.

But one of the basic facts concerning slowly varying functions is that the
convergence of L(cx)/L(x) to one as x — o is uniform in ¢ if ¢ is bounded away
from 0 and o [5], so that the first term in (2.4) certainly converges uniformly
for y € [¢, z:). The second term in (2.4) is almost as easy, for the uniform small-
ness of (2.6) for large ¢ allows the integrand to be replaced by its limit with
small error for any integrator, and an integration by parts then allows the uni-
form convergence property of slowly varying functions to be applied here also.
This gives all that is needed for the case n = 2 of the theorem; the general
case can be handled by an induction which will not be explicitly carried out.

3. The invariance principle. Let K be the space of all right-continuous func-
tions on [0, 1] having left-hand limits everywhere, and left-continuous at one.

2 The fact that this really is a transition function is a corollary of the theorem, so it is
not necessary to verify it directly.
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Notice that if the distribution function F(x) is continuous, for each & the random
function 'Y, defined by (1.1) belongs a.s. to K; this is clear from the definition.
If F(z) is not continuous, £ 'Y}, may not be a.s. in K, since, for certain values
of £, S, = ¢ has positive probability. However, this is very improbable if £ is
large, and it is easily seen that this possibility does not at all effect the general
validity of the results below. We will use Skorohod’s “J;-topology” for the space
K, according to which a sequence of functions z,(¢) ¢ K converges to z(¢) ¢ K
if and only if there exists a sequence of continuous, one-to-one functions A, (%)
mapping [0, 1] onto itself such that

(3.1) limpse [22(8) — 2(Ma(8))] =0,  limpaw M(f) — 8 =0

where both limits are uniform in ¢ [10]. Our main result is

THEOREM 3.1. For each o & (0, 1), there exists a Markov process {yi®} with
y§® = 0, path functions a.s. in K, and with pi?(y, x) as defined in Section 2
for its transition probability function. If (1.1) and (1.2) hold and if f( ) is a real
functional defined on K and continuous in the Jy topology almost everywhere with
respect to the measure of the process yi®, then

(3.2) limg, Pr [f(§7'Ye) < 2] = Pr[f(yi”) < a]

for each x at which the right-hand side is continuous.

Proor. The first part of the theorem can be obtained from general theories
of the path-functions of Markov processes, but in the present case a simple direct
proof is possible and yields more information about the paths. We begin by
considering a process {y{”} with time parameter running over the rationals in
[0, 1] and with p{®(y, z) for its transition probability function. Observe that
fors > 0,a = 0,

Pra<y® Sbla+s=<y=b+s) =1;

this is readily verified from the formula (2.2) for p«(z, y). It is a consequence
that
Pr(yi — 9 =s|yi =z s) = 1.

Therefore if y{® = y is positive, as it a.s. is by (2.1), with probability one
y$%) = y — h for all rational A such that y — h > 0. A path function of {y{*,
¢ rational} thus a.s. consists of a finite or countable collection of line segments
with slope 1 and extending so that their left ends approach the t-axis.

We now define the random function {® for all ¢ from the version for rational
t by

(3.3) Y5 = lim,, 0 4 2, r rational.

From the results of the previous paragraph this amounts to ““filling in” a dense
collection of line segments, and to defining yi® to be 0 if ¢ does not lie in the
interior of one of the segments. In particular, except for a path set of prob-

ability zero the limit in (3.3) exists for all ¢ and defines a function in K.
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It remains to show that the process {y{®} (as now defined for all ¢ ¢ [0, 1])
has finite-dimensional distribution functions given by iterating pi® (y, ). (This
will imply that it is a Markov process.) From the nature of the paths it is clear
thatifa — A =2 0,2 > 0,and { — h = 0,

Pra—h<yii<b—h) ZPr(a<y®<b)=Pr(a+h<yh<b+h);

in fact, the events of which we are considering the probabilities satisfy the cor-
responding inclusion relations. But if 4 is given values such that ¢t + hor¢t — &
is rational, the bounding probabilities are determined by pi® and approach the

desired value as a limit when A — 0. Thus for each ¢
Pr (a < yi” < b) = pi®(0,b) — pi*(0, a).

The argument applies without essential change to the joint probabilities, and
this completes the first part of the proof.

The second part of the theorem is a simple consequence of a general theorem
of Skorohod [10], according to which the conclusion follows provided that (i)
the processes {£ 'Y} and {yi®} have (a.s.) pathsin K, (ii) the finite-dimensional

distributions converge, and (iii) that

(3.4) lim,.,o lim supz.. Pr (Ac, £ 'Y) > €) = 0 for all e > 0,
where

(3.5) A(e, y(t)) = SUPro<tgu<tre min (Jy(h) — y(Bl, ly(t) — y()]).

It is now almost evident that these conditions hold, for (ii) was proved in Section
2, and (iii) is true because the paths of £ 'Y}, are “random saw tooth” func-
tions for which it is easily seen that

A(C, S_IYEt) = 2c

for all £ The second part of (i) was proved above, and the first part is auto-
matic if F(z) is continuous. Even if it is not there is no problem, for altering
the paths of £ 'Yy, at ¢t = 1 to make them belong to K affects only a vanishingly
small set of paths for £ large. This completes the proof of the theorem.

From Theorem 3.1 the existence of many limiting distributions for functionals of
£'Y;, (and so indirectly for certain functionals of the sequence {:S,}) can be
inferred. It is, however, more difficult to actually obtain the distributions; this
can be attempted either by computations with a specific distribution F(z)
obeying (1.2) or by direct study of the process {y{®}. Also of interest is the in-
verse problem, whereby a limit theorem for {¢'Y;} gives information about
{y§®}. As an example of this we have

TuEoREM 3.2. The processes {yi®} satisfy

(3.6) Pr (supepoy % < 2) =1 — Ho(1/z),
where the distributions H , are determined® by
0 1 —1
(3.7) [ e am. = [1 A f gahaD dg] :
0 0

3 The inversion of these transforms is discussed in [8].
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Proor. The functional f(x;) = sup z:, ¢ € [0, 1], is Ji-continuous at all points
of K. It was proved in [8] that

limgw Pr (f(£'Yy) < 2) = 1 — Ho(1/2)

provided Y, is defined by (1.1) and (1.2) holds. (3.6) is therefore a consequence
of Theorem 3.1 (specifically, of (3.2)).
4. Relatlon to stable processes. We shall first derive a connection between the

processes {#:®},0 < a £ %, and the one-dimensional symmetric stable processes.
TureoreM 4.1. If {z4 is a Brownian motion process with xo = 0, then

(4.1) ye=t—sup{r = t|z. = 0}
defines the same stochastic process as {y (”} If {x4 is a separable symmetric stable

process of index v € (1, 2) with right-continuous paths, and again zo = 0, (4.1)

defines a process equivalent to [yt

Proor. Whatever the nature of the zero-set of {x, provided only that ¢ = 1
is almost surely not an isolated zero, the function y. belongs to K with probability
one. Also in all cases, the strong Markov property for {y:} follows from that
for {z;. It is only necessary to identify the transition probabilities with p{®

to complete the proof.
In the Brownian motion case, the facts necessary to accomplish this are
found in [9, ch. 6]. One of these is the statement that if {x,} is Brownian motion

and {y4 defined by (4.1), then

(4.2) Pr (yu4s = 2|y = 0) = Fy(2/1),

where F; is given in (2.1). Another useful fact is that in case L is the length of
a zero-free interval for z; , and zy = 0, then

(4.3) Pr(Léle;y>0)=1—(y/x)%, z =y

From these results the transition probabilities for {y:] are easily computed.
Indeed, (4.2) is the transition probability for {y4 from the state 0, and equals
P (0, z). When y > 0 we have by the method of “renewal at the next zero”

that
Pr(yt+,§xlys=y)=<y+)H(x—y—t) *
_ Y
[ n(Z)d -G
This is easily seen to be the same as pﬁ)(y, x) given in (2.2). Thus when {z
is Brownian motion, the process of (4 1) is {y¥}.
The proof in the cases 0 < « < % is of the same kind. If the stable process of

index v ¢ (1, 2) replaces Brownian motion in (4.1), the analogues of the two
results of Lévy used above are the following:

(4-4) PI‘ (yg_‘,.s é X | Ys = 0) P Fl/‘y(x/t);
(4.5) Pr(L<z|LzZy>0)=1-— (y/x)l—(ll‘r),

8
v
<
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(It is of some interest to compare (4.4) with Theorem 8.3 of [7], which gives
the same law as a limit distribution when y; is defined with respect to a set

rather than the single state 0.)
The transition probability of {y:} can be computed from these formulas in the

manner illustrated aboye, and p{® (y, z) is the result if y = (1 — &)~ Equa-
tions (4.4) and (4.5) are quite easy consequences of the fact that

Pr (z; = 0 for some ¢ ¢ [a, b] |2 = 0)
(46) =ﬁm?h{ﬁmmwmﬂ1+wﬂw.
0

This result is obtained in a paper by Blumenthal and Getoor [1], where it is
derived using a theorem of Kac [4].* A “zero” of z; is taken in [1] and [4] to mean
either x; = 0 or lim z, o = 0, but it will be shown in an appendix that (4.6)
remains correct if the strict interpretation of z; = 0 is employed.

Another identification for {y{®}, valid for all « é (0, 1), can be made as follows.
Let {T'(¢)} be a process with independent increments whose transition prob-
abilities are determined by
(4.7) E(MTetn-Toly ol 0<B<1.

)

These increments are a.s. positive, so it is possible to find a version of {7'(¢)}
which has right-continuous, monotonic sample functions; let 7'(0) = 0. This
process is the stable subordinator of index B, so called because it can be used as a
“random clock’’ to obtain stable processes from Brownian motion.

TueoreM 4.2. Let {T'(t)} be the stable subordinator of index B and let

(4.8) y() =t —sup {r £ t| T(s) = r for some s}.

Then {y(£)} is the same as the process {y"}.
Proor. Again we need only compare the transition probablhtles for the
(Markov) process defined by (4.8) with p{”(y, z). It is shown in [1] that
. (b—a)la
(4.9)  Pr(T(s) ¢ la, b] for some s) = g l w (1 + u)7 du.

From this it is easy to see that

(4.10) Pr (y: < 2) = Fig(z/t),
and it is also not difficult to obtain
(4.11) Pr(yps Sz +s|lye=2)=1—[z/(z + 9P

(The derivations are the same as those of (4.4) and (4.5) from (4.6).) These
quantities are sufficient to determine the transition function, which is just that
of {yi?} as given in (2.2).

4 The author is much indebted to Professor Getoor for sending him a copy of [1] before
publication, and for pointing out the derivations, parallel to those in the Brownian motion

case, of (4.4) and (4.5) from (4.6).
& This identification was suggested by R. K. Getoor.
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6. Relation to diffu~ion processes. A unique diffusion process on the positive
z-axis is defined by the initial condition z, = 0, the backward differential equa-
tion

(51) U = ('Y/x)uz + '%uzz, _% <7< %)
and the reflecting-barrier boundary condition
(5.2) lim, o4 2™"u, (¢, ) = 0.

We shall also need to consider symmetrized versions of these processes on
the whole real axis. If the infinitesimal generator is written in the intrinsic form
Af = D,D,f, then the choices

(5.3) u(@) = 2/(1 — 4Nz,  o(z) = o)

define a diffusion which is regular on (—®, ©) if —1 < vy < %, which is sym-
metric about = 0 and whose backward equation reduces to (5.1) if z = 0;
the absolute values of these processes are the one-sided diffusions defined above.
The purpose of this section is to prove the following:

TuEOREM 5.1. If {z{™} denotes the above diffusion process, either one or two-
sided, then '

(5.4) ye=1t—sup{r < ¢|2%? = 0}

is the same stochastic process as {yi®} for each a & (0, 1).

ReMark. It has been suggested that this result might be deduced from Theorem
4.2 by using the theory of “local time” for diffusions as developed especially by
K. Ito and H. P. McKean. The author is insufficiently familiar with this (as
yet largely unpublished) theory to carry through the suggestion, and hopes that
in any case the method of proof used below may itself have some interest.

Proor or THEOREM 5.1. First notice that in case @« = % the theorem reduces
to Theorem 4.1, because the diffusion {z{®} is just the Wiener process or its
absolute value. For clarity we shall give another proof in that case, and then
explain how the new proof can be extended to the other cases in question. It is
only necessary to consider the finite-dimensional distributions.

Let {z;, 7 = 0, 1, - -} be the random variables of the simple random walk
process (steps == 1, each with probability 1) with 2z, = 0. Let X; be the times
between the ¢ — 1st and the sth visits to the state 0. The distribution of the
X is well known, and it is easily found that using them as the random variables
in (1.1) leads to a process which converges to {y’} by Theorem 3.1. On the other
hand, the {2z} process itself converges to Brownian motion in the sense
of Donsker’s theorem [2]. Now consider the functionals

(5.5) () = yu, 9(ze) = to — sup {r < 4| 2. = 0}.
From our Theorem 3.1,

(5.6) limg,o Pr [f(§'Yy) < 2] = Pr[f(y?) < 2.
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But if z{™ is defined as z;/n’ if ¢/n = t, and by linear interpolation between
these points for other ¢, then by Donsker’s invariance principle

(5.7) limpsw Pr [g(2{™) = 2] = Pr[g(z:) < 2]
where {z; is Brownian motion. Now examining the definitions reveals that
g(@i”) = 0Vt = f(0 Var).

Thus the left sides of (5.6) and (5.7) are the same, and we see from the right
sides that the distribution of »{¥ is the same as that of yi, in (4.1) or (5.4)
when {z;} is Brownian motion; this obviously remains true if {z;} is the absolute
value of Brownian motion instead. The joint distributions can be handled in
the same way by redefining, for instance,

k

k
(5.5") f(y) = ;]aiy,,. , 9(xe) = iZo aift: — sup {r = t:f2, = 0}],
where ao , - - - , a; are arbitrary constants.

To adapt this method of proof to the cases where a > 3, we shall replace
the simple random walk process used above by a spatially inhomogeneous birth-
and-death process {z{”}, symmetric about 0. Such a process can be defined by
specifying the birth and death rates 8, and §, in each state n; we choose 2o = 0
and let

B, = (1 — )L+ A/, & =Q0—4D" ifn>0,
(5.8) Bo=(1—29)" = d,
B, =1 =47 8, =10 =471 =)L +1/(n])" ifn <O

(If ¥y =0, this is the random walk used above except that the waiting times
between transitions have become exponentially distributed random variables.)
Let X; denote the time between the beginnings of the ¢ — 1st and the ¢th visits
to state 0. The distribution of the X; has been studied by Karlin and McGregor
in [6], and their results tell us that this distribution satisfies (1.2) if y = i —a
Thus if again the function f( ) is defined by (5.5) and a process {¥4 by (1.1)

with respect to the random variables X; , we have
(5.9) limg.. Pr [f(§ ') < 2] = Prf(yi”) < al

provided y = 3 — a.

To obtain the convergence of {z{”} to the two-sided diffusion {z{"}, we use
in place of Donsker’s theorem a recent result of C. Stone [11, Section 6]. We
have chosen the processes {z{”} and {z{”} so that this theorem is applicable,
but a slight modification is convenient. Let 2"’ be a continuous function ob-
tained from the step function z{” by joining the left end-points of the “steps”
with straight line segments. Then by Stone’s theorem

(5.10) limg.o Pr [g(%2{0") = 2] = Pr[g(2{”) = 2],
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where g( ) is defined in (5.5). Now, as before, we note that
g(&74D) = £V, = (50,
and combining this with (5.9) and (5.10) we have shown
Pr (yi;) < 2) = Pr (y, < @),

where {y} is defined by (5.4). The argument can be adapted to the finite-di-
mensional joint distributions by using (5.5’) instead of (5.5) as before.

One technical point deserves a further comment: the functionals f and g must.
possess suitable continuity properties in order for the invariance principles we
have cited to be valid. There is no difficulty with f; g is also continuous under
uniform approximation by continuous functions at a “point” (function) which
changes sign in every neighborhood of its last zero prior to # . Almost all paths
of the two-sided diffusion {z{"} do have this property, which is essential in justi-
fying (5.10). However, it is apparently not possible to prove Theorem 5.1 in
this way for the one-sided diffusions of (5.1) and (5.2) without the aid of the
two-sided processes as intermediaries.

6. Corollaries. There are, of course, any number of specific limit theorems for
positive random variables contained in our work above. The corollaries we shall
point out here, however, are results about the diffusions and stable processes
of Sections 4 and 5;° the invariance principle serves only as an agent in the proof.
For instance we have an extension of Lévy’s formulas for Brownian motion to
the diffusions defined above:

TuEOREM 6.1. Let {2} be either the one or two-sided diffusion process of Sec-
tion 5. Then

Pr (2{” = 0 for some ¢ ¢ [a, b)) = F,u4l(b — a)/b]

(6.1) (t—a)/a
= o8y f w1+ w) 7 du
0

™

If L is the length of a zero-free interval for z{™, then
(6.2) Pr(L<z|L2y>0) =1— (y/)

Proor. The first equality of (6.1) follows from (2.1) and Theorem 5.1; the
second is an easy calculation. Equation (6.2) can then be derived from (6.1)
by the same argument which leads from (4.2) to (4.3) or from (4.6) to (4.5).

The other result we shall mention seems to be new even in the case of Brownian
motion (a = %), although there is no doubt an easier proof in that case.

THEOREM 6.2. Let Z'® represent the length of the longest subinterval of [0, 1]
during which {x has no zeros, where {xs is either a symmetric stable process of
index (1 — &)™ (here a < %) or else a diffusion satisfying (5.1) and (5.2) with
v =% — a. Then
(6.3) Pr(Z® 22) =1— Hu(1/z),

6 Without explicit mention it will be taken for granted that the previous assumptions
about the initial conditions, separability, etc. of these processes are still in force.
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where H, is defined by (3.7). If Z'® is the longest subinterval of [0, 1] not inter-
secting the range of a stable subordinator T(u) of index e, (6.3) again holds.

Proor. This follows immediately upon combining Theorem 3.2 with the various
results of Sections 4 and 5.

APPENDIX

We will prove a lemma which allows certain results from [4] and [1] to be
recast into the form which was needed and used in Section 4.

ProrosiTiON. Let {z:} be a process with stationary independent increments,
where either the increments or xy have a continuous distribution function. Assume
that {x4} is separable and has right-continuous paths. Then if

E, = {w: 3t > 0 3 lim,,r0 2.(0) =y, z(w) &= y},

we have Pr (E,) = 0 for each real number y.

Proor. We will actually work with sets E,(h, H) defined as above except
that ¢ is restricted to a finite interval 0 < h < t < H < «; clearly it is sufficient
to show that Pr [E,(h, H)] = 0 for all h, H. It is known that under our assump-
tions the path functions of {z;} have (except for an w set of probability 0) only
jumps, and for ¢ < H only finitely many jumps of length exceeding ¢ > 0. We
can thus speak of the largest, second, etc. jumps in (k, H), using time of oc-
currence to complete the ordering in case of ties. Since E,(h, H) is the union of
the events that the ¢th jump in (h, H) occurs “from y,” we can see that E,(h, H)
(and so E,) is a measurable set.

We observe next that the set

A(h, H) = {y: Pr [E,(h, H)] > 0}
is countable. Indeed, the events
Bi(y) = {w: ¢th largest jump is “from y’}

are disjoint as y varies (for fixed 7) and so for only a countable number of y
can Pr [B;(y)] exceed 0. But then

o

A(h, H) = H{y: Pr [Bi(y)] > 0}
must also be countable.

Consider finally the set A* = A(0, H — h), defined in the case z, = 0. Be-
cause of the temporal and spatial homogeneity of the process {z4, if it is given
that 2, = u the resulting set A,(h, H) is A* translated by w. Now for fixed Y
there can be only countably many values of u such that y ¢ A* 4+ u, so that
unless u lies in a certain countable set, Pr [E,(h, H) | z» = u] = 0. But

Pr [E,(h, H)] = [° Pr[E,(h,H) |2y = u]l d Pr (z) £ u),

and from the assumptions the integrator assigns measure 0 to any countable
set. Thus Pr [E,(h, H)] = 0forany 0 < h < H < .
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