MOMENT ESTIMATORS FOR THE PARAMETERS OF A MIXTURE OF
TWO BINOMIAL DISTRIBUTIONS!

By W. R. BLISCHKE?
Cornell University

1. Introduction and summary. Mixtures of distributions present two types of
problems. The first is the problem of identifiability; that is, given that a dis-
tribution function F is a probability mixture of distribution functions belonging
to some family &, is the mixture unique? This topic has been dealt with quite
extensively in recent papers by Robbins [9], Teicher [10] and [11], and others.

The second problem is that of estimating the parameters of the individual
distribution functions comprising the mixture and the mixing measure. This is
clearly possible only if the given mixture is identifiable. K. P. Pearson [5] and
C. R. Rao [6] consider the problem of estimation for a mixture of two normal
distributions and P. Rider [7 and 8] has recently constructed estimators for
mixtures of two of either the exponential, Poisson, binomial, negative binomial
or Weibull distributions. In each of these cases the method of maximum likelihood
yields highly intractable equations. All of the above estimators have been con-
structed by the method of moments. In this paper moment estimators will be
constructed for a mixture of two binomial distributions, (n, p1) and (n, p.).
The construction presented here parallels that of Rider [8]. The limiting distribu-
tions of the estimators and their asymptotic relative efficiency will be computed.

It will be shown that asthe binomial parametern — <« the asymptotic efficiency
of the moment estimators tends to unity.

Finally, moment estimators will be constructed for the binomial parameters

when the mixing parameter « is known. In this case an apparently anomalous
result is obtained in that the asymptotic efficiencies of the analogous moment
estimators when « is known tend to O rather than 1 asn — .
.. It is pointed out that it is possible, however, to construct moment estimators
whose efficiency tends to 1 in this case as well. The estimators so constructed
do not depend on the known proportion « when n = 3. This suggests a possible
explanation of the above anomaly: This fact that the asymptotic efficiencies
tend to O rather than 1 as n — « may be due to the failure of these estimators
to take into account sample deviations from the true proportions in which the
respective populations are present in the mixture.

2. Construction of moment estimators for a mixture of two binomial distribu-

tions. Let Yy, ---, Y, be independent and identically distributed chance vari-:
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ables, each having distribution

= =na'{—1"_”.—a'2’—2”-”
) P(Y; =y) <y>[p(1 )"+ (1 )p:(1 — p2) "]

fy=0,1,---,0rn
= 0 otherwise,

where 0 < @ < 1,0 < p1 < p2 < 1, and n = 3 is integral. Equation (1) is a
mixture of two binomial distributions and is easily seen to be identifiable only
if n = 3. Under this assumption, estimators for the parameters p;, p-, and a
may be constructed as functions of certain sample factorial moments. It should
be noted that in the following construction, as in the example considered by
Rider [7], the assumption p: < p; is essential. The estimators do not have the
stated properties if p1 = p, . (Note that it is actually required only that p, = p. ;
the particular assumption that p; < p, is for notational convenience.) The
construction of the moment estimators is as follows:
Define the kth sample factorial moment to be

_LAr(Yi—1) (Vi k+ 1)

(2) = =D =k ¥D

k=1,---,m,

and denote its expectation by fi . (Equation (2) differs by a constant multiplier
from the usual definition of a factorial moment. Cf. Kendall and Stuart [3],
Sections 3.7-3.10.) To compute f; , define the chance variables

U; = number of Y, taking on the value j

forj =0, :--,n. Then Uy, - --, U, are jointly multinomially distributed with
parameters =; = P{Y; = j},7 = 0, - - - , n. Furthermore, F; can now be written

12 (n—k n \
F*‘ﬁj-o( i ><k+j> Ui
Thus

3) _ "Z_k (n —k ( n )’1 )
( fi = =\ J k+j) "
=ap; + (1 — a)ps.

In constructing estimators, the moments given in (3) are considered as equa-
tions in the three unknowns «, p;, and p. . Any three such equations may be
solved for the three parameters. We shall consider f; , f , and f; . Note that

fi—fi=all —a)(;— )’
and

fs —flfz =a(l — a)(;m + p) (; — p2)°,
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so that p1 + p: = (fs — fife)/(f2 — fI) = @, say. Now from f,,
(4) O el ,
D1 — D2
which, when substituted into f,, yields
fo=TTP () gl = (i — pla + B}
P11 — P2
Thus
(5) p: — ap: + fia — fo = 0.
Solving for p; instead of p, yields equation (5) with p, replacing p, . Thus the
restriction that p, < p, results in the unique solution
P2, P = 3a £ 3(d’ — dafs + 4f2)},
which together with equation (4) expresses p;, p: and « as functions of fi, fe,
and fs .

Moment estimators are now specified by substituting F; for f;, 7 = 1, 2, 3, ‘
in equations (4) and (6). This yields the estimators

ﬁl] 1A= 2 (4" — 44T, + 4Ry

=11 ,
@) b | T |24+ 5 (4 — 44F, + 4B} |
@& (Fy — p2)/ (1 — D2)
where
_ F3 bt Fl F2
A= T Zhh

The estimators of equation (7) have the unpleasant property of assuming com-
plex as well as indeterminate values with positive probability, though this prob-
ability tends to 0 as m — «. The event may be avoided altogether by using
instead, e.g.,

D1 if A> — 4AF, + 4F, > 0
pa and (A? — 44F, + 4F,)! < min (4, 2 — 4),

(8) -

F, otherwise.

Because of the discreteness of the problem, exact distributions of the estimators
of equations (7) and (8) are not difficult to obtain. In fact, one can, formally at
least, write expectations and variances for the above expressions. Because of the
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complexity of the functions involved, however, these moments cannot be written
in a simple form and consequently shed little light on the behavior of
the estimators.

The following two sections of this paper are devoted to asymptotic properties
of the estimators of equation (7) (equivalently, of (8)), and a comparison of
these estimators with the maximum likelihood estimators p5 , ps , o

3. Asymptotic behavior of the moment estimators. The limiting joint dis-
tribution of § , P2 , @ as m — « is readily obtained by application of an obvious
extension of a theorem of Hoeffding and Robbins ([2], Theorem 4). The theorem
requires the existence of a differential of the transformation specified by
HI(FI , F, , F3) = ﬁl , Hz(Fl , F. , Fa) = ﬁg , Hg(Fl , F, ) Fa) = & evaluated at
f = (fi,f2,fs) and that E|F* < «,4 = 1, 2, 3. These conditions are satisfied
for the example under consideration. We conclude that 9, , P , & are asymptoti-
cally normally distributed with respective means p,, p;, o and covariance
matrix 2, 5,.4 having entries

3 3
(9 o = ;uz(Fi)i‘iji‘i'j + “Z_:l wu(Fi, Fiy)Siboir,
75"

where ¢;; = (8H./oF;) |;.

We proceed to the computation of =5,,5,,2 . To compute this covariance matrix,
the covariance matrix of (F,, F., F;) and the first order partial derivatives
dH./dF ; evaluated at f = (f1,f2,fs) are required for z,j = 1,2, 3.

The moment generating function of the distribution of equation (1) is

(10) () = a(l = pr+ pe)" + (1 — @) (1 — p2 + pee’)™.

From equation (10) the necessary moments of the F; are obtained. By equation
(3) these can be written as

w(F) = - [fi+ (0 — DA = - ('
. 1
mn(n — 1)

1
mn(n — 1)(n — 2)

w(Fy) = 2+ 4(n —2)fs+ (1= 2 — B — = ('

u(Fs) = (6fs + 18(n — 3)fa + 9(n —3)(n — 4)fs

an + (0 = 8)(n = )0 — O — = ()"

unFy,F) = —= (2 + (1 = 2)fi) — Lk

#11(F1,F3) = Elﬁ [3fs + (n — 2)f4] - }ﬁflfs

p.u(Fg,Fg) = m[ﬁfs + 6(n - 3) f4 + (’n - 3)(” - 4)f5]_:;"tf2f3 .
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Finally,
rlh(pz + 2p1) _ pl + 2p2 1 —
a a a
oF; |s (pr — p)? I — o a— —
Spp _3mt ) 2
| D2 — D1 P2 — M P2 — P1_

After some computation the elements of the asymptotic covariance matrix of
P1, P2, & are now found to be

oh = é [D3(p2 + 201)°ue(F1) + (p1 + 202)°u2(F2) + po(Fs)
- 21?2(172 + 21’1) (p1 -+ 2P2)#11(F 1, F ) + 21)2(172 + 21’1)#11(F L F 3)

— 2(p1 + 2p;)un(Fs, Fs)]
_na <n>”1 dopi gi + a'Piqs | <n>“1 api gt + o'pi g

amn 2 ma2s? 3 ma?2s
ol = P2 + n\ " apl ¢ + 4’ G + 2\ apt @2+ o'pl gl
(13) " amn T2 ma%e’ 3 ma?%
: _ ool n\" api gl + o@'pi 63 n\ " apigi + o'p; g3
“&‘"nTJ“g(z) me T \3 m
oo =" “aplgi + a'pi g (" “apl ¢t + o'pi ¢
P12 2 maa’6? 3 maa’§*
v s =3 (n)‘l Zaﬁ q? + a'p§ q§ +2 n\"* api' qf + a’pg qf
e 2 madb® 3 mad®
oo g (P) epid + 2'Pidh |, (n) T apigi + o'pi s
s 2 ma'8 3 ma’8®

where ¢y = 1 — p1, @ = l—pz,a'=1—a,and5=p2—pl.

4. Asymptotic relative efficiency of the moment estimators. The asymptotic
efficiency (ARE) of a consistent asymptotically normally distributed estimator
6 of a parameter 6 relative to the maximum likelihood estimator 6* is computed
as ARE (6) = o+/c}, where o4» is the Cramér-Rao lower bound and ¢}/m is the
variance in the limiting distribution of 4. If § = (8,, - - -, 8,) is an estimator of
a vector parameter § = (6, - - , 6,), with the components of § asymptotically
jointly normally distributed with mean 6 and covariance matrix (1/m)Z,
asymptotic relative efficiency may be computed in this way for each component
of 6, or the components may be considered jointly. In the latter case, the joint
asymptotic efficiency (JARE) of 4 relative to the maximum likelihood estimator
6™ is computed as the square of the ratio of the areas of the ellipses of concen-
tration of the respective asymptotic normal distributions. (Cf. [1], chapter 32).
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Since the areas of the ellipses of concentration are proportional to the deter-
minants of the respective covariance matrices,

det (29‘)
det (=) ~

The elements of the inverse of Zg« = Z,r,%,.* for the example under con-
sideration are easily computed, e.g., the upper left hand element of =5} ,s,.* is

. <glqi_plm>2 -3 [«%@D F(la]? P(y)

(14) JARE (§) =

2
n —y—
) 2171 — )" P (y — npy)’

=azz":<y

y=0 P(y)
_ o 5 [Pu(y)(y — np)T?
pi(l — p)* i P(y) ’

where P(y) = P(Y = y) is given by equation (1), and Pi(y) =
<Z) pi(1 — p;)™*. With the further notation P(y) = (Z) p3(1 — p;)™?, the

desired matrix may be written

2;%.10;.«*
o2 [Py(y) (y — np)] s Py(y) P(y) (y — npy) (y — np,) o2 Py(y)(y — npy) [Pi(y) — Pa(y)]
vt ¢t P() » P2 q1 @2 P(y) m @ P(y)
_ o [P2(y) (y — npa)]? o' Py(y) (y — npa) [Pi(y) — Pa(y)]
3 g3 P(y) P20 P(y)
s [Pi(y) — Pa(y))?
P(y)
(15)

The elements of (1/m) =3, ,5,,s are given by equation (13). Asymptotic efficiencies
can now be computed as indicated above.

It is interesting to note the behavior of the asymptotic relative efficiencies as
functions of the parameter n. It is easily seen that the moment estimators are a
solution to the maximum likelihood equations if n = 3, so that for n .= 3 the
asymptotic efficiencies are unity. For n > 3 this is not true, however, since in
fact det (Zptp8,0*) < det (24,.5,.4) in this case.

It will now be shown that as n — «, however, JARE ($1, #., &) — 1. By
equation (13), as n —

pl( ]- - pl) 0 0
on

(16) 2;11,;)2,& = 0 p2(1 - p?) 0 + O(n—2) .
1 — an

0 0 a(l — a)
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Thus to prove the assertion it suffices to show that as n — «,

na
p(1 — p1) 0 0
(17) s oeox = 0 M 0 +0(n?
DP1,P2,x p2(1 _ pz) .
1
L 0 0 a(l — a)

We shall proye the convergence for the upper left-hand elements of the matrices
of equation (17). The convergence of the other entries follows similarly.
We wish to show that as n — |

n

(18) ; Pi(y)(lg(y; npy)® _ npl(la— 2) ¢ o0,

The proof follows from the following result of Okamoto ([4], Theorem 1): If X
is a binomially distributed chance variable with parameters n and p, and ¢ a
non-negative constant, depending possibly on n or p, then

(l) P((X/n) — P 26) < 6—2nc2’
(i) PU(X/n) — p < —¢) < &,

We have
S PI)y —np)’ _ ap(l —p) | _ | o w[Py) 1
=T PG 2 S e
1—au PPy —np)’ _1—a
" RO F AP = @ " st Y

+ 1z >, Py < <9>2 ¢ inpmr?
a  yzin(pitp2) a

by Okamoto’s theorem with ¢ = $(p. — p1). Since p1 # p; by assumption, the

last expression can be made arbitrarily small by choosing n sufficiently large.

This verifies equation (18).

As an illustration of the above phenomena, the ARE for the individual esti-
mators and the JARE are given as functions of n for o = 4 and (p1, p2) =
(.3, .6) and (.1, .8) in Table 1. It is evident from the table that the ARE depends
upon how close p; and p, are. It would be of interest to determine as functions
of &, p1 , 2 (or p; — p1) the minimum asymptotic efficiencies as well as the values
of n at which the minima occur. This problem has not been investigated.

5. Estimation of the binomial parameters when « is known. If in the distribu-
tion of equation (1) the mixing parameter « is known, then n = 2 is required
for identifiability. In this case the estimators which are maximum likelihood
when n = 2 are obtained by solving the first two factorial moments for the two
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TABLE 1

Asymptotic efficiencies of the moment esttmators as functions of n for
(p1, P2y @) = (.3, .6,.4) and (.1, .8, 4).

P = .3, P = .6 P = .1, P2 = 8
" ARE ARE
. A . JARE « N . JARE
y4t P2 a y41 P2 &
3 1 1 1 1 1 1 1 1
4 .975 .962 .966 .960 .876 .816 .885 771
5 .953 .932 .937 .921 .857 .819 .908 .739
6 .929 .903 .907 .882 .800 .790 .907 .666
8 .889 .859 .858 .816 .788 ~793 .933 .646
10 .856 .827 .821 .763 .792 .805 .950 .651
20 .768 .752 .766 .623 .855 .874 .985 .749
49 .736 744 .872 .562 .937 .946 .998 .886
0 1 1 1 1 1 1 1 1

unknown parameters. The solution again requires that p; < p.. It should be
noted that here this is a much more restrictive assumption than in the previous
case. Unless a = %, it is not sufficient when o is known to know simply that
p1 # ps ; it must be known specifically that « is the proportion in which the popu-
lation having smaller mean is present in the mixture (Cf. Rider’s discussion on
this point in [7], p. 145).

Under this assumption a development similar to that of Section 2 yields as
functions of the first two factorial moments the moment estimators

~ l—a 2%
:01=F1— (FZ_FI)

a

(19)

H
=Rt 2 m-m ]
1 —«a

These estimators are efficient for n = 2. We shall now show, however, that the
asymptotic relative efficiencies of the estimators of equation (19) tend to 0O
rather than to 1 as n — .

The entries of the covariance matrix (1/m)Z;, 5, are found by the methods of
Section 3 to be

2 _ P, o8 n <n>“1 apiqi + o'ps qs

amn 4om 2 4o2ms?
(20) Y Y (n ' apigi + o'pig)
i odmn  4a'm 2 NI
o _ 8 (n\Tapidi+ apigs
Thubr = g 9 Aol s ,
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where the notation is as in Section 3. The relevant comparison in this case is
between Zj, 5, and the inverse of
2;%'.17’2‘*
@ Py —mp)l  ad’ o Piy)Paly)(y — npy) (y = npy)
pigi P(y) P1P2q1 ¢ P(y)

a” 5 [Pa(y)(y — nps))?
P @3 P(y)

(21)

By the results of the previous section, the entries of =+ 3+ are O(n™) asn— .
By equation (20), however, the entries of 23, 3, are’0(1), so that asymptotic
efficiencies are O(n™") as n — .

Thus the estimators of equation (19) do not have the desirable properties for
large n of the moment estimators of the previous sections. It has been suggested
that this apparent anomaly may be due to the choice of moments for construction
of the estimators, and that if some other functions had been chosen, efficient
estimators could be obtained by a straightforward construction when « is known
as well. It is not at all evident, however, that this should be an inherent property
of this class of estimators. An alternate possible explanation is that the estimators
of equation (19) do not take into account sample deviations from the true propor-
tions in which the respective populations are present in the mixture. This ex-
planation may be intuitively more appealing, particularly in view of the following
result:

Note that if n = 3, the estimators p; and p. (of equation (7)) are meaningful
and have the same properties as before. This follows since ¢3,, 3, and oy,,5,
remain the same so that by equation (13),

m(l - Zh) 0
an

p2(1 — p,)
0 1 —an

g0 = + o(@%).

Furthermore, applying the results of the previous section to equation (21),
we get

an 0

_ m1 — py) _
EP%‘-P?* = (1 _ ) + O(n 2
0 a)n

p:(1 — p)
so that ARE of p; and . tends to 1 as n — =, as claimed.

We can now combine the estimators p;, P and Py, P to form estimators,
p1 and p, , say, which are maximum likelihood (and hence efficient) for =2
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(22)
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(Z’; ’ p;) = (ﬁl ’ ﬁZ)
= (1, P)

f n=2

if nz=3.
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Thus it is possible to construct efficient estimators for large n when « is known.
Notice, however, that the estimators so constructed do not make use of the
knowledge of @ when n = 3. This may indicate that the latter explanation of
the abnormal behavior of p; , P2 given above has some merit.

TABLE 2

Asymptotic relative efficiences of the moment estimators p1, P and D1, D3

as functions of n for (p1, s, @) = (3, 6, 4) and (.1, 8, 4).

n ARE(;) ARE(®,) JARE ARE(p1) ARE(p,) JARE
p1 = .3, p2 = .6

2 1 1 1 1 1 1

3 .903 737 .636 .039 .044 .011
4 .968 75 738 .084 .003 .032
5 .954 760 722 124 137 .056
6 .041 751 707 .167 .180 .083
10 .880 731 .641 .321 .335 .205
20 .661 .621 .437 587 .508 .448
49 .281 .334 .151 729 739 584
o 0 0 0 1 1 1

P = 1: P2 = -8

2 1 1 1 1 1 1

3 .590 .880 .589 .616 .649 564
4 .408 .648 .370 758 729 .650
5 .301 .527 .261 .801 778 .690
6 .226 .428 .186 782 776 664
10 119 .250 .089 791 .804 .667
20 .058 .141 .042 .855 874 758
49 .024 .063 .018 .935 .946 .888
o 0 0 0 1 1 1

For the examples of Section 4 the asymptotic efficiencies of the estimators of
equations (19) and (22) are given in Table 2. Note from the table that if p, — p1
is small the estimators p; , P» are considerably more efficient unless n is quite
large, while for larger difference between the parameters the primed estimators
are always more efficient. This indicates that a “better’” procedure would be to
use P, P2 if 2 < n < k, say, and Py, P if n > k, where k is some function of
p1, P2, @ (or p; — p; and &) determined in such a way that the JARE of the
combined estimator is as high as possible.
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Another possibility would be to construct estimators for p; and p, inde-
pendently by maximizing individual asymptotic efficiencies. This problem has
not been investigated but is evidently related to the problem of determining
minimum efficiency discussed in the preceding section.
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