THE SCORING OF MULTIPLE CHOICE QUESTIONNAIRES!

By HErRMAN CHERNOFF

Stanford Unsversity

1. Summary. In many types of questionnaires the element of guessing is im-
portant. An approach to correcting for guessing is proposed. Here one regards
the score assigned to a subject on a question as an estimate of the unknown
value of the subject’s knowledge on the question. This value is one when the
subject knows the answer and is zero otherwise. To derive scores with minimum
mean squared error, it is necessary to consider the responses of the whole popu-
lation of subjects. Thus the score for a correct answer to a question depends on
the proportion p of correct answers in the population. In the simplest model, we
assume that a subject who knows the answer, responds correctly and that others
select a response at random among r choices. Then an incorrect response is
scored zero and a correct one is assigned a score of A/p where A is the proportion
of the population who knew the answer and can be estimated using the relation
p=X+1—-N/r

The general approach is also applied to a variety of more complicated models,
each of which are examples of a specified general formulation. These models
include the “pairs of questions” model, the “partial knowledge” model and the
“scaled questions’’ model.

While the method applies neatly to single questions, there are fundamental
difficulties in extending it to obtain an overall or composite score for a subject
on an examination consisting of many questions. This problem is discussed
briefly and the simple minded procedure of totaling the scores for the individual
questions is partially evaluated.

2. Introduction. We indicate a general approach to the scoring of examina-
tions with multiple choice questions. The main idea may be motivated by re-
ferring to a test question which offers three choices, 4, B, and C and for which
we can assume that A is the correct answer. Suppose that when the results for
all of the subjects are tabulated, the three choices 4, B, and C have been se-
lected with equal frequencies. If there is a large number of subjects, these fre-
quencies indicate that at most a negligible portion of the subjects knew the an-
swer. The customary procedure of scoring a plus one when a subject chooses 4
would be misleading. It would constitute the throwing of an irrelevant random
“noise” into the total test score. Clearly, giving each subject a zero or throwing
out the question altogether would be preferable. Suppose, on the other hand,
that when the results are tabulated, A is selected 90% of the time, and B and
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C, each 5% of the time. Then it would seem reasonable to assume that 85%
of the subjects knew the answer and only 5% guessed it correctly. Here it would
make much more sense to score a plus one for each subject who selected A.

Comparing the two cases above, it seems reasonable to expect that a proper
procedure for scoring an individual should depend not only on the subject’s
choice, but on the frequencies of the choices for the entire population of sub-
jects. Once this is granted, it remains to decide on an optimal scoring procedure.
The general approach, which consists of regarding the score as an estimate whose
mean squared error should be minimized, is discussed and is illustrated in Section
3 for the simplest model. In Section 4, a generalization where two questions are
considered simultaneously is discussed. Then the method is generalized in Sec-
tion 5. There it is seen that the necessary calculus is essentially that of condi-
tional expectation or regression.

Sections 6, 7, and 8 are devoted to other variations of the model. Finally,
in Section 9, the question of overall or composite scores is discussed and mis-
cellaneous remarks are left for Section 10.

3. The simplest model. In the simplest model we assume that there are r
possible responses to a question. A subject who knows the answer gives the cor-
rect answer. One who doesn’t know the answer guesses and has probability 1/
of arriving at the correct response.

Suppose that the proportion of the population who know the answer is A.
The proportion who answer correctly is given by

(3.1) p=x+(1/1)(1 —N).

For a large sample of respondents p and A may be estimated accurately. Suppose
that each individual who obtains the correct answer receives a score of z = z,
and the others receive a score of z = z,, . We regard z as an estimate of the
appropriate value which is one for an individual who knows the answer and
zero for the others. The respondents can be partitioned into three groups.
There is a proportion A who know the answer and respond correctly. For them
the error of estimate is . — 1. There is a second group, a proportion p — A,
who do not know the answer but guess correctly. For them the error of estimate
is x, since they deserve zero. Finally there is the proportion 1 — p who do not
know the answer and who guess incorrectly. For them the error of estimate is
2, . Consequently the mean squared error is given by

V =2z — 1>+ (p — Nazi + (1 — p)za.
Minimizing with respect to z. and z,, we obtain

_ A _rm—1 _
(3.2) z, = » & =Dp’ 2o =0
giving a minimum value of

(3.3) V =Xp — N /p.
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This compares favorably with
(34) V¥=p—2

which is the mean squared error for the usual scoring system which assigns a
one to a correct answer and a zero to an incorrect answer.

The scoring method represented by equations (3.2) is subject to two criticisms
which we shall now consider. First, one may remark that the scores obtained
by this technique are perfectly correlated with those obtained by the usual
method. Thus nothing is gained by using this new approach. The second criti-
cism is that a subject’s scores will depend not only on his response but also on
the responses of the other subjects. In fact a subject who knows the answers to
each question on an examination will receive very little credit if most of the other
subjects are ignorant. This criticism was leveled by Lyerly [10] at a technique
formerly proposed by Hamilton [6] to correct for guessing.

The first criticism oversimplifies the situation. If an examination consists of
several questions the sum of a subject’s scores under the proposed system will
not correlate perfectly with the sum of the scores under the usual system. There
is one exception to the last remark. That is the case where all the questions are
equally difficult to the population of subjects in the sense that the correspond-
ing A are equal. Even in this case a modification that we shall soon propose will
invalidate the first criticism.

The second criticism may be serious in those cases where it is desired to com-
pare subjects with an objective standard (as expressed by the examination)
and an underestimate of the subject’s knowledge is worse than an overestimate.
In other cases the criticism may be disregarded. If an underestimate is no worse
than an overestimate, the proposed system is superior. If it is merely desired
to rank the subjects, the proposed system is adequate. If it is merely desired
to give the subject who answers all the questions correctly a perfect score, one
may compare the total scores with the one that would be given to a subject with
all answers correct.

Finally, the following modification will eliminate the first criticism and reduce
the effect of the second when it is applicable. If the population of subjects is
large, one may subdivide them or stratify them into subgroups and score each
subgroup separately. If the stratification is performed according to some cri-
terion which correlates with ability to answer the questions, the new procedure
would have improved performance.

For example suppose that the population is divided into three groups of
equal size. In the first almost no one knows the answer, in the second half of
the subjects know the answer, and in the third almost all of the subjects know
the answer. The scores for correct answers in these subgroups would be 0,
(1 4+ 7", and 1 respectively. The overall mean squared error would be
[6(r + 1) compared with [2(r 4+ 1)]7" if the population is not-stratified.

If stratification is applied, the scores are no longer perfectly correlated with
those of the usual procedure even when the examination consists of one question.
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Soundly applied stratification reduces the effect of the second criticism when it
applies. One may note however that stratification could lead to unhappy in-
dividual consequences if a few very capable subjects were, by chance, included
in the wrong stratum. Even this possibility can be avoided by variations of the
following expedient. Obtain total scores without using stratification. Then use
these total scores to stratify the population and recalculate new improved
scores.

The last suggestion has the “advantage” of objectivity. The final score de-
pends only on the responses of the subject and the population and not on any
other extraneous criteria. One can elaborate on it. First one could estimate a
regression of the A for an individual item or question on the total scores. Second
one could break up the examination into relevant subportions and then apply a
multiple regression. It may even be feasible to apply some form of factor analy-
sis. Finally one could iterate and use the new improved scores to stratify and
then to compute further improved scores.

4, Pairs of questions. In this section we shall examine a generalization of the
simplest model where the scores on a question depend on the responses to a pair
of questions. This model will serve to lay the groundwork for a proper general-
ization of the method applied in the preceding section. It also represents one
attack on the problem of scoring responses so as to reduce the effect of the ignor-
ance of some subjects on the scores of other subjects.

Let Ay be the proportion of the subjects who know the answer to both ques-
tions, Ao be the proportion who know the answer to the first only, Ay be the
proportion who know the answer to the second only, and Ay be the proportion
who don’t know either answer. Similarly we define pec, Pew , Puwe, and Py In
terms of the proportions who answer the questions correctly (¢) and incorrectly
(w). We are assuming that subjects who don’t know the answer select a re-
sponse at random.

Then,
Do = Ay 4 0 4 2oty Ao
T r I:
pm=)\m(r:1)+)\m(r;l),
(4.1) ( . .
Dwe = A1 r-; )+)\oo(r:2 ),

r— 1\
wa—koo<r ) .

Let Zice , Tiow, Tiwe, Tiww De the scores assigned for the 7th question to indi-
viduals whose results for the pair of questions are cc, cw, we, and ww respec-
tively, © = 1, 2. Then, the minimum mean squared error of the estimate .
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from the appropriate value (which is one for individuals who know the answer
to the 7th question and O for the others) is obtained as follows:

Each subject belongs to one of nine nonempty classes determined by his
knowledge and his answers. To each is assigned a value due to the knowledge

and a score due to the pair of answers. Minimizing the mean squared error
consists of minimizing

V <)\ll + ) (xlcc - 1)2 ()ﬂ} + 7\_?) xfcc + g‘r—-—_‘l—)@ (xlcw - 1)2
r r r
2
+)\ (7"_1) lcw+[ ( )+)\ ( 1)] lwc+)\00< _1>x¥ww
r? r r? r
and ‘

—1
Ve = ()\u + Ml) (T2e — 1)* + <)-\;—0 + );_020) Zhee + — - Mot (22w — 1)?
-1 —1 — 1Y
+ )\00 ( 1) 2cw + l:)\lo ! + )\00 ! ) :lxgwc + )\00 <r ) x%ww .
r? r r r

We obtain

A+ (Mo/r)

Lige = ———————— Ziwe = 0
Dec
Liew = (_C_:i__))\m/r Tiww = 0
(4.2) Dew
M+ Nay/r) _(r = 1a/r
Xogee = —————— Lowe = —————————
Pee Duwe
Zoew = 0 Zoww = 0

which yield minimizing values of

 beesT ] [esnePe]

pcc pcw
4.3
(43) )\01 )\10 Ao (r—1) Aoo(r — 1)
M+ 25 r T I r Mot r?
V, = + - .
pcc pcw

Thus by combining two questions, one may obtain some reduction in the
mean squared error for each question. Technically this reduction is obtained by
using more information; namely the combined scores. To accomplish this re-
quires more computation and an extension of the model. This extension in-
volves assuming independence of the guesses for individuals who don’t know the

answers.
For an examination consisting of only two questions the method proposed in
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this section is an improvement over the suggestion in Section 3 of stratifying by
total scores. Its efficacy depends on the extent to which the knowledge of the
answers to the two questions are correlated.

In principle the model and results of this section can be extended to examina-
tions of arbitrary length. They would give results superior to those based on
stratification using only criteria involving responses on the examination. Un-
fortunately this extension is not very practical. The computational difficulties
grow enormously as the number of questions increases. Furthermore the number
of subjects necessary to estimate reliably the appropriate \’s also grows enor-
mously. As a result, the author would recommend using this model or an ex-
tension of it only on a portion of the examination consisting of a small number
of strongly “related’’ questions. The word related is used in the sense that knowl-
edge of the answers are correlated.

Suppose that the two questions are of unequal difficulty but of equal value.
Then the subject who answers the easier question correctly and the other in-
correctly will have a higher total score than the subject who misses the easier
question but answers the other correctly. Some reflection may be required to
make this fact seem non paradoxical.

A couple of similar comments were suggested to me by F. M. Lord. One is
that a subject who does well on questions 2, 3, - - - should (other things being
equal) receive a better score on question 1 than a subject who does poorly on
questions 2, 3, ---. This is presumably correct if we extend the model of this
section to cover several questions and if knowledge of the answers to various
questions are positively correlated.

In Section 7 an extreme case of a generalization of the pair of questions model,
called the scaled model, is discussed. In this case knowledge of the answer to
one question implies knowledge of the answers to the preceding questions and
it is relatively easy to analyze several questions simultaneously.

The reader may have noticed that the model of this section is related to that
used in configural analysis (see [9]).

5. A general formulation. The models of Sections 3 and 4 suggest the follow-
ing general formulation which will be applied to several other models in Sections
6, 7 and 8.

Let w represent a random variable associated with a random subject. In our
applications it will generally be a vector valued random variable which will
characterize the knowledge of the subject and his responses. In Section 4, w =
(wy , we , ws, ws) could be used to describe a subject where w; = 1 if he knows
the answer to the first question and 0 otherwise, w. = 1 if he knows the answer
to the second question and 0 otherwise, and w; and wy are his responses to the
two questions.

Let z represent the observed responses. In the above example z can be regarded
as the subvector (w;, ws). In general z will be some function of w, i.e.,

(5.1) z = f(w).
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We are interested in the value of the subject’s knowledge since that is what is
to be estimated. In the above application the value is w; + w. (assuming the
two questions are equally important). The value can not be observed directly.
It is to be estimated from the observed data represented by 2. In any case the
value v is also some function of w, i.e.,

(5.2) v = g(w).

Now we select an assigned score « to serve as the estimate of ». Since z is to
depend on the observed data, we write

(5.3) z = h(z).
We shall select the scoring system » which minimizes the mean squared error
(5.4) V = E{(z — v)%.
Applying the properties of conditional expectation, we note that
(5.5) V = E(E[(z — v)"| 2]}
and hence is minimized by selecting
(5.6) z = h(z) = E{v|3},

i.e., z is the regression of v on 2. To apply this method of scoring it is necessary
that enough be known about the probability distribution of w so that the above
regression can be evaluated. In the models of Sections 3 and 4, it was possible
to use the data for the population of subjects to estimate the probability dis-
tribution of w. It would suffice to know the joint distribution of » and z.
For the above method of scoring, the minimum variance is
(5.7) V = E{v} — E{z%.
For an arbitrary scoring system z* = h*(z), the mean squared error is in-
creased by
(5.8) V¥ —V = E{(z* - 2)}
since
V* = E{(z* — )} = B{(@" — o)} + B{(z — v)*} + 2B((z* — 2)(z — v)}
and
E{(z* — 2)(z — v)} = B{E[(2* — 2)(z — v) |2]},
= E{(z* — 2)E[(z — v) | 2]},
= 0.
This general model and these results can be applied to the examination as a

whole or to individual items or tc sections of the examination. We defer some
discussion till Section 9 on total scores.
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6. Partial knowledge. The simple model of Section 3 does not apply in many
cases. One variation introduced by Horst [1] and discussed by Gulliksen ([5],
pp. 1-486) and Solomon [12] allows for partial knowledge.

In Horst’s model which we shall call the simple ordering of responses model,
there is an order of the r possible responses. When they are arranged in order, a
subject’s knowledge will consist of knowing that the correct response is among
the first ¢ possible responses for some 7 between 1 and r. The subject selects one
of these 7 responses at random. If A; denotes the portion of the population who
can limit their answer to the first ¢ responses, the proportion who select the
jth response is

lIA
I\

j=sr

Aj Aj1 A
1 R it S T4 1
(6.1) P +] i R
A large sample of responses will enable the investigator to estimate the p;’s
directly. These will determine the appropriate order (if it is not already known)
because the lower index in the appropriate order is associated with a larger p; .
Finally

(6.2) A = Jlp; — pinl 1

In particular, we have the known result that A, = p; — p., i.e., the percentage
who know the answer is the difference in the observed proportions for the two
most favored responses.

Let us relate this example to the general formulation of Section III. For each
subject let w = (I, J) where I is the group from which the subject made his
selection and J is his choice. The observed datum is z = J. The value v = g(w)
will ordinarily depend on the unknown I. Thus we may represent this dependence
by » = v;. The investigator who regards partial knowledge as worthless will
letv, = 1and v, = v3 = --- = v, = 0. For those cases where partial knowledge
is regarded as valuable some other assignment can be made.

According to this model,

Plw = (3,7)} = \/i forl £j =<

=0 otherwise.

lIA
IIA

J=r.

(6.3)

To derive the optimal score 2 = E{v |2} we first compute the conditional
probability of w givenz = J =j

, _ N/E
(6.4) P{W—(zj)l*] 7} E)\/a

a=j

=% for i=j, j+1L-,m

Thus the score corresponding to J = j is

(6.5) z; = E{v|J = j}
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and
=1

(6.6) V=2 not— Z; pi i’
“

while the ‘“standard” procedure of assigning v; to a choice of j would lead to an
increase of

(6.7) V-V = ]lei(xj — ;)
For the important special case where v; = 1 and v =03 = -+ = v, = 0,
(6.50) = Mm = (pr — p)/m 2
x2=x3= "'=$T=O'

Here we have

(6.62) V=M—=\/p = [p:(p1 — p2)|/D1
and
(6.72) V¥ =V = pi/pi.

The simple ordering of responses is not the only way in which partial knowl-
edge can be represented. Other more complex models could be applied to yield
what we shall call complex orderings. In general let us assume that the subject’s
knowledge can be represented by a set S of possible responses from which he
selects one at random and among which is the correct response.” If Sy, Sz, -+ -,
S, are possible sets one may attach values v1, vz, -+ - , v, to the corresponding
knowledge. In some cases it is possible to use the observed frequencies of re-
sponse to estimate A;, A2, - -+, A,» where \; is defined as the proportion of sub-
jects whose knowledge is represented by S;. We present one example. Let
S; = {a}, S = {a, b}, S; = {a, ¢}, S: = {a, b, ¢, d}. From the observed fre-
quencies of responses P, , D , Pc , Pa , We estimate A1, A2, Az, and Ay by solving

Da = >\1+%)\2+%>\3+%>\4,
Dy = 3\ + 1),
Pe = 3N + 1\,

Pa = t\a.

(6.8)

While » =< r is necessary for the A’s to be estimable, this condition is not suffi-
cient.

If the N’s are estimable the general approach of section 5 is applicable. In
those examples of complex ordering where the A’s are not consistently estimable,®

2 8till more complicated models can be constructed where the choice among the elements
of S are not equally probable or even where S does not contain the correct answer.
3 The appropriate technical term is unidentified.
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a minimax approach may be applied to the mean squared error. That is, x = h(z)
could be selected to minimize

(6.9) maxge B{ (z — )%

where @ is the class of all distributions of w consistent with the observed dis-
tribution of z. Note that for given 6 and given z = h(2)

(6.10) Bif(z — v)} = Ellz — Bo(v| 2]} + Bollo — Eo(v | 2)]}.

The first expectation on the right hand side does not have a 8 subscript because
it can be computed by using the observed distribution of z. Now fix ¢ and let
v*(6) represent a point in r + 1 dimensional space whose coordinates are
Efv|z =1}, Bo(v|z=2), -, Bo(v|z = 1), [Boflo — Bo(v| )]} Let o*
be the point whose coordinates are z; = h(1), 2, = h(2), -+, 2. = h(r), O.
Then Eof (x — v)?% is the squared distance between z* and v*(6). The minimax
estimate has a simple geometric interpretation. It corresponds to the point on a
given r dimensional plane in » 4+ 1 dimensional space for which the maximum
distance to the points of a specified set is as small as possible. The specified set
is {v*(6): 6 £ Q}. We shall not discuss complex orderings further.

7. Questions which can be scaled. In Section 4 we discussed a model where
the results on two questions were combined. One object was to capitalize on
the correlations among the knowledge of the answers to several questions.
The analysis for two questions was more difficult than for a single question.
We indicated two objections to the extension to many questions. These were
the difficulty of analysis and the large sample size required to obtain good esti-
mates of the necessary parameters.

There is a special extreme case for which these objections do not apply. This
is the case where the questions test knowledge which can be scaled. More pre-
cisely, suppose that there are s questions such that any subject who knows the
answer to the 7th question knows the answer to all the preceding ones. If he
knows the answer to only the first ¢, he answers them correctly but guesses at
random among the r choices on each of the subsequent questions. Let \; be
the proportion of subjects in this category for ¢ = 1,2, - -+, s and let A\, be the
proportion who don’t know the answer to any of the questions. Let

(7'1) w=(IaJaK1’K2""aKL)

where I = 0 indicates the number of questions whose answers the subject knows,
J = I indicates the number of correct answers before a wrong one appears
and K, , K,, ---, K, are the other questions, if any, which are answered cor-
rectly. The subject’s response may be represented by

(7.2) 2= (J,K,K,y,--+,K.).

The value associated with the subjects knowledge can be represented by v = v, .
One may use v = I although other measures may be appropriate on occasion.
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We have
- j+il—i _ s—j—1
(73) Plw = (5,4, ki, ko, -+, k)] = )"’G) <r T 1) ’
i ) .
(74) Plz= (G, ki, ko, -, k)} = 2 N P (p — 1)
=0

J
P{U):(i,],k,) z=(])k’)}=xz7} Ai’ri
(75) ' | ' >
for 0 =7 =3

Then, given z = (4, k1, k2, - -+ , ki), the appropriate score is
j . j . )
(76) XT; = Z Vi \; Tz/z i r’
=0 =0

where \; may be estimated using the fact that

. r—1 J 7
(7.7) P =Pl =j} = —5 ;Air.
and hence
(7.8) No= (r — 1)7{rp; — pid}
where the p; may be directly estimated from the observed frequencies of the
random variable J. As may have been expected, K;, K., - -+, K, are not in-

volved in the estimation of A and do not influence z.
The mean squared error corresponding to the optimal procedure is given by

(7.9) V=Z>\iv?—2pjx§-
i=0 =0

8. A model involving reexamination. An example which was brought to the
author’s attention consisted of a Spanish Language examination which was
given to a group of subjects before and after special training. Each question
offered three choices and it seemed clear from the nature of the examination
that the simple ordering partial knowledge model was appropriate. On the other
hand one would expect a definite relationship between the- knowledge before
and after the training. That is, one would expect that on the whole, students
would know at least as much for the second examination as they would for the
first. Then it would make sense to consider a question before training and one
after training as a pair of questions to which the models of scaling and simple
ordering could be applied.

However data were unavailable to substantiate the expectation that subjects
did not forget between the examinations which were to be given six months
apart. Therefore it was decided to drop the scaling assumption out of fear that
if it did not hold, the results would be questionable. The following model was

applied.



386 HERMAN CHERNOFF

Let 1, 2, -- -, r be the natural order of choice among the possible responses.
Let Sy = {1}, S; = {1, 2}, S; = {1, 2, 3}, - - - represent the possible knowledge
of a subject responding to the question. We represent the combined knowledge
and response of a subject to the question on both examinations by

(81) w = (Ily-[Z) Jl,J?)

where the subject knows that the answer is in S;, on the first examination,
knows that the answer is in S;, on the second examination, and responds J;
on the first and J; on the second examination. Let v; be the value associated with
S; . Thus the subject deserves a value vy = v;, on the first examination a value
Y@ = vz, on the second. In the above mentioned Spanish examination, the in-
vestigator was satisfied only with complete knowledge, ie., v; = 1, v, = v; = 0.
The responses are denoted by z = (J;, Js).

Let
(82) )\il,iz = P{I] = ’il y 12 = 22}
Then
(83)  P{w = (ir,42,41,42)} = t.“;'? for 12h<a,lSjsSh,
1702
and

Piriz = P{Z = (.71 :j2)} = Z r)‘il,iz(iliz)—l'

S,

The appropriate scores to be assigned to a subject for the two tests are given by

(84) T = E{vll Iz = (jl:j2)}
and
(8.5) rp = Efvy, [z = (71,52}

Ifz = (.71 ,jZ)’
coon—1
o (ph.jz)—l {jlég_s_r Uiy )\u,zz('lzl 12) } .

HEEE
However
Z )‘ilyiz(iliZ)—l = Pije = Dirtlids
12=J2
where a p with r 4 1 for a subscript is assumed to be zero. It follows that if
¢ = (ji1,J2)
(8.6) T = (pjl,:iz)—l {Z vi1[pi1,iz - pil+l.1'2]}

11=J1
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and
(8.7) 22 = (Pirin)” {Z; Vig[Diris — pn,i2+1]}-
19=J2

It may be noted that (¢1%s) “\i1.i, can be computed by taking second differences.

Then
(8.8)

Niviy = (0182) [Piy.i — Diga1,iy — Pirsigtr T Pirtiig+l-

We illustrate with an artificial example with » = 3, v = 1, v, = .2, v3 = 0,
where the frequency of observations (Ji, J.) is given by the following table
which also includes the marginal distributions

DPi1.is
AN .
N 2 3
J1 N
1 .340 .130 .035 .505
2 .180 .100 .025 .205
3 .100 .070 .020 .190
.620 .300 .080

The tables for pi.j, — Di+1,i, and Djy iy — Dip.ip41 are given below.

Piris — Dirtl,ie

Piriz = Piiial

< ;
N 2 3 2 1 2 3
1N Ji N
1 160 .030  .010 1 210 .095  .035
2 080  .030  .005 2 080  .075 .02
3 100 .070  .020 3 030 .05  .020

We compute 2, and 2, for each possible value (i, j2) of z.

X1 X2
< <
N2 1 2 3 L2 1 2 3

N AN

J1 N\ J1 A

1 518 277 .314 1 .674 .146 .000
2 .089 .060 .040 2 .528 .150 .000
3 .000 .000 .000 3 .400 .142 .000

The table for \i,i, and the associated marginal probabilities Ai;. and X.;, is
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also presented below

Ay 112
N
N 2 3
(51 \\
1 .130 .040 .030 .200
2 .100 .100 .030 .230
3 .090 .300 .180 .570

.320 .440 .240

In specific applications it may pay to compute the A’s merely to determine
whether the model is consistent with the data. If some of the A’s are negative
one may ask whether the model fails to apply or whether sampling variation
was responsible for the discrepancy.

We may compute

(8.9) Vi = E{viy} — E{zl} = .1029
and
(8.10) Vy = E{vly} — E{z3} = .1107

In this example the mean squared error derived from using the naive scores
zi and z5 which assign value v, to response j are given by

(8.11) Vi = E{(af — n)Y = .2712
and
(8.12) Vi = E{(zF — )%} = .2240.

Finally, if the relationship between the two questions is ignored and the
simple ordering partial knowledge model is applied to each we would have
scores given by zi* = 442, 075, and 0 for J; = 1, 2, and 3 respectively and
zy = .587, .147 and 0 for J, = 1, 2, and 3. The mean squared error for this
procedure is given by

= 1090

and

Vi = 1174,

In this example, combining the two questions does not lead to much improve-
ment over considering the questions separately.
The special case where v; = 1, v, = v; = --- = v, = 0 gives rise to much
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simpler formulae for the scores. Here, if z = (j;, j2), we have

(863') Ty = (pl,jz)_l(plvjz - p2,i2)1 1f.71 =1,
r = 0 1f]1 £ 1,
(873) T2 = (ph,l)—l(ph,l - pil,Z), 1f.72 = 1,
Ty = 0 lsz £ 1,
(8.9a) Vi= A —jZl (Pr32) " (Prsy — Do)
Py

(8.10a) Vo= A1 — jlgl(pn,l)_l(pn.l — Pira)

9. Composite scores. Consider an examination consisting of a considerable
number of individual questions. How should a subject be assigned a composite
score for the examination as a whole? At several points in this paper it may have
seemed to be implicitly implied, that simply totaling the scores for the indi-
vidual questions or items in the examination is the proper and natural procedure.
Indeed, this procedure is far from unreasonable and it will be evaluated inci-
dentally later in this section. However it is important to note that the method
of totaling, innocent though it seems, is ordinarily non-optimal. This non-opti-
mality arises principally from the possible interdependence of different ques-
tions. Thus knowledge of the answer of one question is ordinarily correlated with
knowledge of the answer to another. Another issue, which arises and is briefly
discussed at the end of this section, is the possibility that composite scores are
desired, not so much to evaluate a subject’s knowledge, as, to discriminate among
subjects of different ability.

Let us digress briefly to point out that, if it is desired to evaluate a subject’s
knowledge, the general formulation of Section 5 applies to the entire examination
considered as a unit. However, unless the examination consists of few questions
or of a few sections to each of which the scale model of Section 7 is applicable,
practical difficulties would make it unfeasible to apply the method of Section 5.
In fact these difficulties are exactly those mentioned in Section 4 where it was
indicated that it would be unfeasible to extend the two question model very far.

How should we proceed if we discard the idea of applying the general formula-
tion to the entire examination? One approach that has been applied consists of
adopting some strongly parametrized assumptions and then applying standard
techniques such as maximume-likelihood to the data. In such cases the funda-
mental approach of this paper is essentially irrelevant. Maximum-likelihood
estimation has been applied with forms of the probit and logit model by Lord
[8] and Birnbaum [1, 2, 3]. Although they were not mainly interested in mul-
tiple choice questionnaires, these were considered. On the other hand the models
they applied avoided an important aspect of the possibility of interdependence
of different questions.
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A second approach which we propose here is to let the composite score be the
sum of individual scores which are assigned so as to minimize the mean squared
deviation of the sum from the overall value of the subject’s knowledge.

To illustrate let us apply this approach to the case of an examination con-
sisting of k questions, for each of which the simplest model with 7 choices applies.
As before p; and \; represent respectively the proportions of the population of
subjects who obtain the correct response and who know the answer to the ith
question. Also

(9.1) Nij = ANlj + 045

represents the proportion who know the answer to both the 7th and jth questions
and can be estimated by observing p; , p;, and p;;, the proportion who answer
both questions correctly. In fact

(9.2) pi; = pp; + 61 — (1/0)]

if we assume that responses to questions for which the subject doesn’t know the
answer are random and independent of one another. Let us also assume that
the value of a subject’s knowledge can be expressed by

(9.3) v = Zklvi

where v; = a; if the subject knows the answer to the sth question and 0 other-
wise.

For the sake of convenience, we may express the subject’s total or composite
score by

k k
(9.4) =8 + Zl (z + wi) = & + 2 af

=1

where z¥ = z; + w;, us = 8; if the sth answer is correct and 0 otherwise, and
x; is the appropriate score for the single question model. That is, z; = a:\i/p;
for a correct answer and 0 otherwise. Then the mean squared deviation of the
composite score from the value of the subject’s knowledge is given by

V¥ = Bfso + 2 (zF — v}’
= (& + Z 8pi)® + E{Zi (m — v3) + (u: — d:pa)}™.

Now

> E{(zi — ) + (us — 0pi)}’

13

ZE{xi ol 1),'}2 -I- E E’{u; ol 5,’1);}2
V+ 2; pi(1 — p:)di

where

(95) EEDIY <1 - %)

1,
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represents the sum of the mean squared deviations for optimal responses to
individual questions. Finally, for 7 # 7,

E{(x; —vi + w — & pi) (& —v; + wy — 8 p;)}
= E{(zf — v:)(&] — v;)} — 8:8; pi ps

_ IS A
=ofm s (=D (-
and we have

Y=V 4+ (4 2 0p)

(9.6) +;pi(1 et 1; 6 {?—5 <1 —;)}{;“pi— j<1 —%)}

It follows that in the case of independence, 6:;; = 0 for 7 £ j, the optimal
score would be z = 2_ z;. In fact the mean squared error for z is easily ob-
tained, even when 6;; # 0, by setting all the §; equal to zero in equation (9.6)

Note that in the general case 8, should be selected to make the mean error
zero. With this adjustment, it is desirable to minimize

T o= it oo s (=% -0 (-

whose partial derivative with respect to 6, is given by

1 a; 1
io Pioll — Diy) — 1—-= ioi | — — 0; —-=)1-
B =m0 =2 (1= 1) 2 o[-0 (1)

Hence if the 6;; are small and positive, as is often assumed to be the case, the
optimal §; would tend to be positive.

1t should be emphasized that in the procedure evaluated above we have
severely limited our choice of scoring methods and we have no simple way of
evaluating how serious a loss this limitation imposes.

Thus far we have assumed that the main ¢bjective of the examination score
is to evaluate the subject’s knowledge. There are occasions when this is not the
primary objective. In many cases where a single composite score is desired the
objective is to discriminate among students of different ability. Then, quite a
different approach to scoring may be appropriate. For example, we propose
here to use as our discriminant function a composite score of the form

(9.7) D= Z o

where the z; is the score which would be appropriate for estimating v; , the value of
the sth part of an examination consisting of & independent parts. In fact let us
select the a; so as to minimize

(9.8) Vo = 2 aiE(z: — v)°
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subject to the condition that

(9.9) wo = 2 aill(v)
be a fixed specified value. This criterion leads to the use of
(9.10) ai = E(v:)/E(z; — v:)™.

This proposal is subject to criticism. An argument could be made for it if
one were to assume that the difference between two subjects were expressed by a
factor 6 so that the ratios of their v.’s, va/vs is approximately 6.

This last assumption is questionable. For individual questions the ratio
va/viz can vary enormously. Even in considering groups of questions vi;/vi
will tend to be one for a group of easy questions and may be quite different for a
group of difficult questions. The assumption of independence is also question-
able in practice.

Aside from doubts about the assumptions, one should note that for easy
questions, E(z; — v:)® may be small compared to E(v;). Then a subject who
missed an easy question would suffer severely. While there is justification for
this, one should consider tempering the ‘“punishment’” in case the question
was missed for reasons outside the model such as a slip of the pen or an over-
sight.

Finally note that the equations of this section apply even in those case where
stratification of the population preceded the application of scoring.

10. Miscellaneous remarks. The method proposed in this paper involves a
combination of two ideas. First, the performance of the population can be used
to estimate the distribution of knowledge or ability among the population.
Second, knowing the distribution of knowledge among the population one may
apply minimum mean squared error estimation to estimate the subject’s knowl-
edge.

This type of combination appeared in a problem given on matriculation ex-
aminations at Columbia University and Stanford University. This problem
originated, I believe, with Howard Raiffa, as a means of exposing the foundation
of Robbins’ Theory of Empirical Bayes Procedures. It evolved to the following
form “A tubetester always reads good for a good tube and reads good for 25%
of the bad tubes. A million tubes are tested. The cost of rejecting a good tube is
equal to that of accepting a bad tube. What procedure is called for if 240,000
of the tubes receive good readings?’’ This problem seemed rather difficult and
exotic to many students.

The possibility of using the performance of the population to help score indi-
viduals arose in a method suggested by Hamilton [6] to correct for guessing and
in a predecessor of this method due to Calandra [4]. As we indicated in Section
3, this use was subjected to some criticism.

The idea of applying minimum mean squared error, and consequently re-
gression theory, was previously introduced by Sitgreaves [11] in a different model,
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which involved a combination of the probit type of model used by Lord [8]
and that of questions which were scaled.

When enough of a parametric structure is put into the model it becomes
" feasible to attack the problem of design of questionnaires. The author has done
some preliminary work for a model where the probability that an individual
know the answer to the 7th question is

N=1-— 6_0“

with ¢; a measure of the ‘“‘ease” of the question and 6 a measure of the ability
of the subject. Similar work was done for multiple choice questionnaires inciden-
tally in the attack on the design of non-multiple choice questions by Lord [8],
Birnbaum [3]. The general problem of design is one of the principal subjects of
“Studies in Item Analysis and Prediction,” edited by Solomon [13].

The validity of a test plays an important role in most studies of item analysis.
In this paper we have ignored this question and there is no essential need to
introduce it. The fundamental issue here concerns how to estimate what the
test does measure. The question of whether the test measures what we would
like it to can be treated separately. In fact if a study were to show how a cri-
terion C is related to knowledge of the answers to items on the test, this study
could presumably be used to derive good values v; for portions of the test.
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