ABSTRACTS OF PAPERS

(Abstracts of papers presented at the European Regional Meeting of the Institute, Dublin,
Ireland, September 3-5, 1962. Additional abstracts appeared in the June, 1962
issue, and will appear in the December, 1962 issue.)

5. Partial Geometries and Partially Balanced Designs. R. C. Bosg, University
of North Carolina.

The concept of partial geometry has been introduced. This is defined as a system of un-
defined objects, points and lines and a relation incidence satisfying the axioms (i) any two
points are incident with utmost one line, (ii) each line is incident with k points, (iii) each
point is incident with r lines, (iv) if a point P is not incident with a line 1, there exist
exactly ¢ points, @1, @2, --- , @ on 1, such that P and Q; are incident with a line. It is
shown that a partial geometry is a PBIB design based on the association scheme with pa-
rameters ny = r(k — 1), ne = (r — 1)(k — 1)(k — ¢)/t, pil =(t-10C—-1)4+k -2
p%l = rt. Conversely if there is an association scheme with the above parameters a sufficient
condition that we can find a PBIB design based on it (which is a partial geometry) is that
k> 3r(r—1) 4+ &+ 1)@? — 2r 4+ 2)]. A general uniqueness theorem is deduced, from
which a number of results by Bruck, Shrikhande, Connor and others can be deduced as
special cases.

6. Conditions under which a Given Process is a Function of a Markov Chain
(Preliminary report). MARTIN Fox, Michigan State University.

The notation of this abstract is that of Gilbert (Ann. Math. Statist., 30, 688-697). Gilbert
proved that a necessary condition for {Y,} to be a function of a given finite stationary
Markov chain is that Z.n(e) < N where N is the number of states of the Markov chain.
Gilbert conjectured that if . n(e) < N, then {Y,} is representable as a function of a Markov
chain with 2. n(¢) states. It is now shown that, given {Y,} with n(e¢) =< 2 for each state ¢,
a Markov chain {X,} with 2. n(e) states can be constructed such that {Y,} is a function of
{X.}. Neither stationarity nor finiteness of the state space for {Y,} are required for this
construction. An example exists of a stationary chain {Y,} with states e, e, e, e for
which n(e) = 3 and n(e2) = n(e) = n(es) = 1 yet {Y,} any representation of {¥,} as a
function of a Markov chain requires at least seven states. This example suggests (but does
not prove) the falsity of Gilbert’s other conjecture that . n(e) < « implies that {¥,} is
a function of a finite Markov chain. It appears that a countable state space would be needed
for some examples.

7. Asymptotic Relative Efficiency of the Combined Sign Test and Wilcoxon’s
Test for Symmetry. D. J. STokgR, University of Pretoria, Republic of
South Africa.

Van Eeden and Benard (Indag. Math. 19 (1957) 381-408) suggested a procedure which
consists of a combination of the sign test and Wilcoxon’s test for symmetry. In the present
paper it is proved that the simultaneous probability distribution of the test statistics of the
sign test and Wilcoxon’s test for symmetry is asymptotically the bivariate normal dis-
tribution under a very general class of hypotheses. Using this result the a.r.e. (asymptotic
relative efficiency) of the combined test procedure with regard to the standard i-test is
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derived for observations from a symmetric distribution with continuous frequency func-
tion. In general, no explicit solution of the a.r.e. could be obtained. It has to be calculated
numerically in special eases. This was done for the uniform and normal distributions, show-
ing that the a.r.e. is a function of the size of the test and of ¢, increasing with increasing
values of ¢, where c is specified by the sequence of alternatives, viz. ¢/N?, used to obtain
the a.r.e. For example, if the size of the test lies between 0.004 and 0.08 the a.r.e. is approxi-
mately equal to 0.646 (uniform distribution) and 0.818 (normal distribution) for ¢ — 0 and
for increasing values of ¢, it increases to values greater than 0.94 (uniform distribution)
and 0.91 (normal distribution).

(Abstracts of papers presented at the Annual Meeting of the Institute, Minneapolis,
Mainnesota, September 7-10, 1962. Additional abstracts appeared in the June,
1962 issue, and will appear in the December, 1962 issue.

3. The Reliability of Repairable Complex Systems, Part B: The Dissimilar
Machine Case. RonaLp S. Dick, International ‘Electric Corporation.

A generalization of the reliability model given in Part A of this reliability study is made.
The failure and repair rates are assumed to be exponential as in Part A, but the model
equations are changed so that the following ramifications are possible.

(1) The label case: it is necessary to know which of the similar machines are broken down
in order to decide if a system failure has occurred.

(2) The parameter case: the values of the failure and repair rates are not the same on
each machine.

(3) The type of failure case: the system goes from state 7 to ¢ + j after a failure, 7 = 1,
and to ¢ — k after a repair, k¥ = 1, whereas in Part A j = k& = 1 only.

A procedure for finding dissimilar machine model equations with time delays before
failure and time restoration constraints after repair are given. Reference is made to Dick,
R. S. (1961) The Reliability of Repairable Complex Systems, Part A: The Similar Machine
Case. §th MIL-E-CON Symposium on Military Electronics, Washington, D. C., and Be-
jarano, R. and Dick, R. S. (1961) Tables for the Reliability of Repairable Systems with
Time Constraints. Ann. Math. Statist., 32, 914 (Abstract).

4. A Characterization of the Geometric Distribution. THOMAS S. FERGUSON,
University of California at Los Angeles.

A random variable X is said to have a geometric distribution with location parameter
a, scale parameter 8 > 0 and geometric parameter =, 0 < 7 < 1, if the distribution of
(X — a)/B is given by the probability mass function px = (1 — w)a*fork =0,1,2, --- .
As a characterization of the geometric distribution the following theorem may be proved.
Let X and Y be independent, non-degenerate, discrete random variables. Then min (X, Y)
and X — Y are stochastically independent if, and only if, both X and Y have geometric
distributions with the same location and scale parameters (and possibly different geometric
parameters). In this paper, the following more general problem is completely solved. What
are the possible distributions of independent, diserete random variables X and Y, for which
the random variables min (X, Y) and |X — Y| are independent? As a corollary of this solu-
tion, it is seen that the only such distributions which are non-degenerate and identical, are
the geometric distributions with identical location scale and geometric parameters. Similar
characterizations are valid for the negative exponential distribution.
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5. Application of Range in Sequential Analysis. Buaskar K. GuosH, Lehigh
University.

Three problems on testing of composite hypotheses have been considered: (i) ratio of
variances of two normal populations, (ii) ratio of between-groups and within-group variances
in a one-way classification by groups under a random model, (iii) ratio of between main-
groups, and within sub-group variances, and of between sub-groups and within sub-group
variances in a second-order hierarchical classification by main-groups and sub-groups. Two
sequential procedures are constructed for each problem using sample ranges. The properties
of the tests are critically examined and possible optimal values of parameters are sug-
gested which will minimize the ASN and cost. The range procedures are compared with the
corresponding fixed-sample and sequential variance procedures. It is also shown that when
range is used in sequential tests of the type considered here a Chi-approximation to the
distribution of range, as proposed by Patnaik (Biometrika, 1950), is more adequate than a
Chi-square approximation which was suggested by Cox (J. Roy. Statist. Soc., 1949) and
subsequently used by Cox (ébid.) and Rushton (Sankhya, 1952) to construct a sequential
test based on range for problem (i). An exact sequential test based on the true distribution
of range is also constructed for particular cases of problems (i) and (ii).

6. Optimum Allocation for Sampling with Replacement in Stratified Sampling.
SaxTt1 P. Grosy, I.B.M. Research Center, New York.

In a stratified sample when sampling is done with replacement in each strata, a better
estimate of the population mean can be achieved by considering the weighted mean of the
stratum-means based on distinct units only. An explicit expression for the variance for the
mean of a stratified sample based on distinct units only, is obtained. Then the optimum
allocations for the different stratum are obtained by minimizing this variance, subject to the
condition that expected number of distinct units is fixed. Neyman’s solution for optimum
allocation follows as a special case.

7. Inverse Moments. ZAKKULA GOVINDARAJULU, Case Institute of Technology.

In recent years inverse moments of positive discrete random variables (for example, the
binomial, the Poisson, the negative binomial and the hypergeometric variables truncated
at zero) have been of interest. Inverse moments of continuous distributions are also of some
interest since the latter can be used as approximations to the inverse moments of the positive
discrete random variables. A precise condition for the existence of inverse moments for
an arbitrary distribution is given. Liapownoff’s inequality for the regular moments has been
extended to hold for the inverse moments. The inverse characteristic or moment generating
function has been defined and its properties of uniqueness, continuity and convergence
have been studied. Levy’s inversion formula for the regular characteristic functions has been
extended to the inverse characteristic functions. Other results have also been obtained.
Some examples are considered.

8. A Test of Linearity Versus Convexity of a Median Regression Curve. BRucE
M. Hirn, University of Michigan.

A test of linearity versus convexity of a median regression curve is presented. The test
consists in estimating a line by the Mood-Brown procedure (using medians) from a central
subset of the observations, making a weighted count of the number of remaining observa-
tions lying above the line, and rejecting the hypothesis of linearity if this number is large.
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The asymptotic distributions of the estimated line and of the test statistic are derived, and
the test is shown to be consistent against twice differentiable convex alternatives.

9. Small Sample Efficiency for the One Sample Wilcoxon and Normal Scores
Tests. JEroME Kvrotz, University of California, Berkeley.

A recursive scheme is given which permits computation of rank order probabilities in the
one sample case. The scheme is applied for normal shift alternatives to compute power and
efficiency for the Wilcoxon and normal scores tests up to sample size n = 10. Local efficiency
for the two nonparametric tests is computed for finite sample size using the values of the
normal scores statistic. In addition, efficiencies for large shifts are obtained by comparing
the rate of exponential convergence to zero of the type II error. The methods used are
similar to those used by Hodges and Lehmann in the two sample problem. The efficiencies
of the Wilcoxon and normal scores tests are quite high relative to the ¢-test in the region
of interest. Although depending upon the level «, it appears, roughly, that the efficiency for
the Wilcoxon decreases with increasing sample size towards its limiting Pitman value of
3/w. The power of the normal scores test is usually only slightly greater than that of the
Wilcoxon. However, for some normal alternatives the Wilcoxon is slightly better with
generally higher efficiency for large shift. A very strong case can be made to use the non-
parametric tests in place of the ¢-test.

10. Efficiency of the Wilcoxon Two-Sample Test for Randomized Blocks (Pre-
liminary report). GorrrriED E. NoETHER, Boston University.

The Wilcoxon two-sample test is often used to compare the effectiveness of two treat-
ments producing observations i, -+, &y and y1, -+, Yy, respectively. In the Mann-
Whitney form, the test is based on the statistic U = #(=: > v;),4,7 = 1, --- , N, where
#( ) equals the number of times that the relationship indicated within parentheses is
satisfied. Proper experimental design requires complete randomization of the 2N units
involved in the experiment. If the 2N units occur in b blocks containing 2n units each, a
randomized block design may be more sensitive. An appropriate Mann-Whitney type sta-
tistic is givenby T = > 5y Un , where U, is the Mann-Whitney statistic for the observations
in the mth block. It is suggested to call the quantity £ = (2N + 1)e?/(2N + b) where
e=[4N — 2)T — aN(@2N — 1)]/[4nU — 2T — nN (2N — 1)] an estimate of the efficiency
of the Wilcoxon two-sample test for randomized blocks. In e, U is computed on the basis
of the observations of the randomized block design. If b = N, the T-statistic reduces to the
sign test statistic. In this case, E = 2¢2/3.

11. Dependability Models for a System of N Parallel Elements. Ray E. ScHAFER
and J. M. FINkELsTEIN, Hughes Aircraft Company. (Invited paper)

The dependability measures, availability and the probability of survival for time t,
are derived for a system consisting of N parallel elements. It is assumed the elements fail
independently and are repaired independently according to the one parameter exponential
distribution. Failure of the system is defined to occur when, and only when X = N — K + 1
elements are in a failed state, K = 1. Thus, degraded forms of operation are permitted.
The method used is to set up the difference equations describing the stochastic process of
system life and death, i.e., state probabilities; convert these to differential equations; and
obtain the solutions by means of Laplace transforms. The explicit expression for the Laplace
transform of each of the state probabilities is obtained by the Gauss Jordan method of
linear algebra. Explicit results were obtained for the time dependent state probabilities. The
Laplace transforms, f;(s), are rational fractions A (S)/B(S) with one pole at the origin,
and usual methods of inversion can be used.
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12. Some Percentage Points of the Non-Central ¢{-Distribution. ErnesT M.
ScHEUER, Rand Corporation.

Percentage points x such that P{¢/ft > z} = e where ¢ has the non-central t-distribution:
with f degrees of freedom and non-centrality parameter (f + 1)}K, (K, is the standard
normal deviate exceeded with probability p) are tabulated for e = .975, .025; p = .2500,.
.1500, .1000, .0650, .0400, .0250, .0100, .0040, .0025, .0010; f = 2 (1) 24 (5) 49. This supplements
percentage points tabulated by Resnikoff and Lieberman in Tables of the Non-Central
t-Distribution, Stanford University Press (1957).

13. On the Non-Existence of Some Classes of P.B.I.B. Based on Triangular
Schemes. EsTHER SEIDEN, Michigan State University.

Consider unsymmetrical P.B.I.B. based on triangular schemes with the following pa-
rameters: v = n(n — 1)/2;b= n— )(n —2)/2;r=n—2;Mm =LA =21t is shown
that a necessary condition for the existence of such designs is the existence of symmetrical
P.B.I.B. with the parameters v = b = (n — 1)(n — 2)/2;r =k =n—2;M =1, = 2.
Furthermore it is shown that there do not exist the above symmetrical P.B.I.B. based on
triangular schemes in the following cases:

(1) n=4k+1, 4k —1,2),(4k — 1, —1), = —1, k an odd integer;
2) n=4k+1, 4k — 1,2), = —1, k an even integer;

@) n=4(k+1), 4k +2,2), = —1, k an odd integer;

@) n=4Fk+1), 4k +2,2)p(—1,4k + 2), = —1, k an even integer;

where the expressions of the form («, 8), denote the Hilbert symbols.

14. Optimum Estimators of the Parameters of Exponential Distributions from
One or Two Order Statistics. M. M. Stopiqui, National Bureau of Stand-
ards, Boulder, Colorado.

Let fi(z) = o~lexp (—x/0), ¢ Z 0; f2(x) = o7t exp [—(x — a)/sl, * = «; and zero other-
wise. Let 2 denote the kth order statistic of a random sample of size n. Harter (these
Annals 82 (1961) 1078-1090) discusses the following three problems: (1) Best unbiased
estimator of the form cxzx for o of fi(x). (2) Best unbiased estimator of the form ciz; + cmTm
for o of fi(x). (3) Best unbiased estimators of the form ciz: + ¢nn for ¢, @ and the mean,
u, of fo(z). For the problem (3) he shows that the optimum [is equal to 1 and that the same
m is optimum for all three parameters. He determines k, [ and m for n up to 100 by ex-
haustive numerical computations. In the present paper, using Euler-Maclaurin for-
mula to approximate the efficiency of an estimator, the following solutions are obtained.
For problem (1): k is the nearest integer to 0.79681 (n41) — 0.39841 + 1.16312(n + 1)7! +
... ; for problem (3); m is the nearest integer to 0.79681n + 0.60159 + 1.16312n7t + - .
It is found that a three term approximation is accurate enough to determine the exact
optimum in these two cases. Only on very rare occasions, when the fractional part is near
0.5, we need a fourth term. For problem (3), only one term approximation for I and m,
namely I =20.639 (n + 1), m = 0.927(n + 1) could be obtained.

15. A Note on Inflated Poisson Distribution. S. N. SingH, Pennsylvania State
University. (By title)

In many cases, where the number exposed to a certain risk follows Poisson distribution
the zero cell is inflated due to the presence of those not exposed to the risk. In such cases



ABSTRACTS 1211

truncated Poisson is used to estimate the parameter . Cohen, Biometrics 16 203-211 has
extended the truncated Poisson which takes account of zero cell. It is easy to find the
M.L. estimates & and A of «, the proportion exposed, and A from his distribution by a simple
substitution, but the distribution of & seemsinvolved from his formulation. Inthisnoteitis
shown that with inflated Poisson distribution P(X =0)=1—a+aexp (—N),P(X =k) =
aexp (=AM /klfork =1,2,---, 0,0 <a<1,0<\ < »;the M.L. estimates & and A
are given by & = (n — no)/n[l — exp (—X)], &k = &, with no the number in zero cell. The
asymptotic distributions of /7 (& — «) and v/2 (A — A) are N (0, o1) and N (0, o2) with

o1 =al(l —a)(l —xe™) + ae]/(1 — e — Ae™),
AL — e /a(l — e™ — Ne™).

2
02

16. Absolute Continuity of Infinitely Divisible Distributions. Howarp G.
TuckeR, University of California, Riverside.

Theorem. Let F be an infinitely divisible distribution function determined by the constant
v and the bounded non-decreasing function G in the Lévy-Khinchin representation. Then F
is absolutely continuous if at least one of the following two conditions is satisfied: (i) G is
not continuous at 0, or (i) F£%°, (1/2?) dG(x) = «. An example is given to show that
the condition given above is not a necessary one for absolute continuity of F.

17. Aids for the Separate Maximum Likelihood Estimation of Scale or Shape
Parameters of the Gamma Distribution Using Order Statistics. M. B.
WiLk, R. GNANADESIKAN, Miss M. J. Huvert, Bell Telephone Labora-
tories.

Tables and graphs are given to facilitate the computation of the separate maximum
likelihood estimation of the scale or the shape parameter of the gamma distribution, based
on the M smallest observations in a random sample of size K (M =< K). The statistical use
of the tables and graphs is illustrated. Some possible applications of these estimation pro-
cedures are discussed.

(Abstracts not connected with any meeling of the Institute.)

1. Two-Sample Rank Tests: (A) Efficient against Double-Exponential Alterna-
tives; (B) Eﬁiciency-Robust. AvrraN BirnBauM, New York University.

In the notation of E. Lehmann’s Testing Statistical Hypotheses (Wiley, 1959), pp. 236-240:
(A) For the double-exponential translation alternatives f(y — A) = §exp — |y — A[, when A
is sufficiently small the most powerful two-sample rank tests are Reject if Z‘Z;l B(s; ,N) >
const., where B(s;, N) = 2 24, (;V) and (j\f) = N!/jI(N — 7)! (B) Let fo(y — A) and
fi(y — A) be specified translation alternatives (e.g., normal and double-exponential). For
j=0,1,1et t; = ¢;(s) =32, h;(s:) be the rank-test statistic giving most powerful tests
against alternative f; when A is sufficiently small. For any rank-test ¢ of fixed size «, let
i (t) denote the slope of the power function for alternative f; at A = 0, j = 0, 1. For each
9,0 £ g=1,lett, = gty + (1 — g)to . Then among all rank tests ¢ of size «, ¢, uniquely
maximizes the quantity 981 (@) + (1 — ¢)B8o(t), for each respective g. It follows that for
sufficiently small A, no rank test, other than ¢, , of size «, is equally or more powerful against
both alternatives fo and fi . The tests ¢, may be called efficiency-robust in this sense, with
respect to alternatives fo , fi . Extension to larger classes of alternatives is immediate. The
proofs are adaptations of the method described by Lehmann.
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2. On the Product of Two Independent Beta Random Variables. B. Rama-
cHANDRAN, The Catholic University of America. '

Let X and Y be two independent beta random variables distributed respectively as
B(a, b) and B(c, d). In multivariate statistical analysis, we occasionally have to use the
fact that if one or the other of the conditions below is satisfied, then the product Z = XY
is also a beta random variable. The conditions are (i) ¢ = a + b, in which case Z ~
B(a,b + d), (ii) a = ¢ + d, in which case Z ~ B(c, b + d). It is possible to establish a
(partial) converse result also; namely, that if the product Z is a beta random variable, say
B(e,f),—X and Y being beta random variables as before—then one or the other of the above
two conditions must be satisfied. This fact is easily proved on noting that for all ¢ = 0,
E(Xt)-E(Yt) = E(Z*) which leads to the relation (valid for all t = 0)

le+d+8)/la+Dlc+d+t)/c+D]=(+F+1)/(+1)

which, in turn, implies that (1) f = b + d, and (2) eithere = a or ¢ = ¢. ¢ = a corresponds
to case (i) above, and ¢ = ¢ to case (ii).

3. Strong Converse of the Coding Theorem for Indecomposable Channels. J.
Wovrrowitz, Cornell University.

Indecomposable channels were introduced by Blackwell, Breiman, and Thomasian (Ann.
Math. Statist. 29 No. 4, 1958, 1209-1220) who proved a coding theorem and weak converse.
(For another proof see A: J. Wolfowitz, Coding theorems of information theory, 1961,
Prentice-Hall, Englewood Cliffs, N. J., Section 6.6.) The author now proves the strong
converse of the coding theorem, which establishes the capacity of the channel. He also
gives a theorem on approximation of the capacity which enables one, at least in principle,
to compute the capacity to any desired degree of approximation in a bounded number of
arithmetical operations.

The same method enables one to weaken considerably the conditions under which the
results of A, Section 6.5, were proved. For example, these results hold under the condition
that all the matrices are scrambling matrices (Hajnal (1958). Proc. Cambridge Philos. Soc.
54 Part 2, 233-246).



