ON ESTIMATION OF A PROBABILITY DENSITY FUNCTION
AND MODE!

By EMANUEL PARZEN

Stanford University

0. Introduction. Given a sequence of independent identically distributed
random variables X; , Xz, - -+ , X, , - - - with common probability density func-
tion f(x), how can one estimate f(x)?

The problem of estimation of a probability density function f(x) is interesting

for many reasons. As one possible application, we mention the problem of esti-
mating the hazard, or conditional rate of failure, function f(z) /{1 — F(z)}, where

F(z) is the distribution function corresponding to f(z). In this paper we discuss
the problem of estimation of a probability density function and the problem of

determining the mode of a probability density function. Despite the obvious
importance of these problems, we are aware of only two previous papers on the
subject of estimation of the probability density function (Rosenblatt [5] and
Whittle [6]).

In this paper we show how one may construct a family of estimates of f(x), and
of the mode, which are consistent and asymptotically normal. We shall see that
there are a multitude of possible estimates. We do not examine here the question
of which estimate to use.

The problem of estimating a probability density function is in some respects
similar to the problem of estimating the spectral density function of a stationary
time series; the methods employed here are inspired by the methods used in the
treatment of the latter problem (see Parzen [4] for references). The problem of
estimating the mode of a probability density function is somewhat similar to the
problem of maximum likelihood estimation of a parameter; the methods em-
ployed here are inspired by the methods used in the treatment of the latter prob-
lem (see Le Cam [2] for references).

1. A class of estimates of the probability density function. Let X; , X», - -+ , X,
be independent random variables identically distributed as a random variable X
whose distribution function F(z) = P[X = z] is absolutely continuous,

(11) Flo) = [ 5 o,
with probability density function f(x).

As an estimate of the value F(x) of the distribution function at a given point
x, it is natural to take the sample distribution function
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(1.2)  F.(x) = (1/n){no. of observations <z among Xi, --- , X,}

which is essentially a binomially distributed random variable whose mean and
variance are respectively given by

(1.4) Var [F.(2)] = {(1/n)F(2)}{1 — F(z)}.

Various possible estimates of the probability density functions suggest them-
selves but none of them appear to be naturally superior. For example, as an
estimate of f(x) one might take

(1.5) fa(@) = {Fu(z + h) — Fu(z — h)}/2h

where & is a suitably chosen positive number. However, how should one choose
h? It is clear that h should be chosen as a function of #» which tends to 0 as n
tends to . But how fast should 4 tend to zero? In order to answer this question
we will have to study the statistical properties of the estimate defined by (1.5).
In particular we must study how the mean and variance of f,(x) depends on A.

It turns out that to study the estimate defined by (1.5) one may as well study
a very general class of estimates to be defined by (1.7) below. Let K(y) be the
function defined by

K(y) = 3, lyl =1
=0, Jyl>1

"Then the estimate given in (1.5) can essentially be written as a weighted average
over the sample distribution function:

(L7)  fulz) = /_:%K (x - y) dF,(y) = ;1}; ; K(x;h"i>

By writing (1.5) in the form (1.7) we are immediately made aware of a multi-
‘tude of possible estimates f.(x) for the probability density function f(x). Instead
of the function K(y) defined by (1.6) we could choose other functions K(y).
We are thus led to the problem of studying the statistical properties of estimates
of the form of (1.7) where h and K(y) are suitably chosen.

We first examine what are the conditions under which estimates of the form
of (1.7) are asymptotically unbiased in the sense that if A = h(n) is chosen as a
function of n such that

(1.6)

(1.8) limpe h(n) = 0,
then

(1.9) lim,.e Elfa(z)] = f().
Now

a0 st = & [ (55) | = [y (i) e
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In order for (1.9) to hold, the last expression in (1.10) must tend to f(z). Con-
ditions under which this happens are given by the following theorem.
TrEOREM 1A. Suppose K(y) s a Borel function satisfying the conditions

(1.11) SUP_—w<y< [ K(Y)| < 0,
(1.12) [: |K(y)| dy < o,
(1.13) limy.., [yK(y)| = 0.
Let g(y) satisfy

(1.14) f_: lg(y)| dy < .

Let {h(n)} be a sequence of posttive constants satisfying (1.8). Define

__rr y _
(115) (%) = s [ & (W) o(z — y) dy.
Then at every point x of continuity of g(-),

(1.16) limsw ga(2) = g(w)f_ K(y) dy.
ReMARK. This theorem may essentially be found in Bochner [1]. Because it

plays such a central role in this paper, we give the proof here since it is brief.
Proor. Note first that

gn(z) — g(x) [: K(y) dy = f_: {g(x —y) — g(x)} ﬁ K(h(n)) dy.

Let 5 > 0, and split the region of integration into two regions, |y| < & and
ly| > 8. Then

gu(x) — g(x)f K(y) dyl = mmax lg(z — y) — g(&:)l]} |K(2)| dz

| €8/h(n)

oz =) ¥ 1 (v
+ [, i K <h< )) dy + lg(=)] m;sh(n)K<h(n)> o

< max oz = ) — 9| [ K@l de+3 sup BKE)] [ low) dy

lz] 28/h(n)

+ lg(=)] |K(2)| dz,
12| 26/h(n)
which tends to 0 as one lets n tend to o, and then lets & tend to 0.
CoROLLARY 1A. The estimates defined by (1.7) are asymptotically unbiased at
all points x at which the probability density function is continuous if the constants h
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TABLE 1
K(y) k(u) = f K (y) dy / K (y) dy = 2l / *(u) du
o0 — o0 M J—o0
E a2t :
1=l =1 sin (u/2)|? 3
0, yz1 u/2 ’
@ -sr+8lyl,  |yl<3 i 4
Fa—lyby,  F=lyl=1 {Sln (u/4)} 096
0, [yl>1 v/
(2m) -t B et G
PO A+ ud)t 3
W/m)(A + ) s /)
1 (sin (y/2) 2 1 - |u[, ul =1
2ﬂ_< y/2 ) 0, ul =1 1/(3)

satisfy (1.8) and if the function K(y) satisfies (1.11)-(1.13) and in addition

satisfies

(1.17)

[:K(y) dy = 1.

For ease of exposition, an even function K(y) satisfying (1.11)-(1.13) and
(1.17) will be called a weighting function. Some examples of weighting functions
are given in Table 1.

2. Consistency and asymptotic normality. The variance of the estimate f,(z)
is given by

(2.1) Var [f.(z)] = n ' Var b 7'K((z — X)/h)].
Now by Theorem 1A

(22) hE [{%K(L;_’f)}z] - %f_:w(m - y)f(y) dy — f(z) f_:Kz(y) dy,

since (1.11) and (1.12) imply that

(2.3) f_: K (y)dy < .

In view of (2.1), (2.2), and (1.8) we have proved the following theorem.
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TaeorREM 2A. Limits for variance. The estimates defined by (1.7) have variances
satisfying

(24) lim o nh Var [1,(2)] = 1) [ K*(y) dy

at all points x of continuity of f(x), if the constants h satisfy (1.8).
From Theorem 2A one can state conditions under which the estimate f.(x) is
consistent in quadratic mean in the sense that

(2.5) Elf.(z) — f(x)?—0 as n— .
The mean square error may be written

(2.6) E|fu(z) — f@) " = "lfa(2)] + b[fa(2)]

in which ¢*[f,(x)] = Var[f.(z)] is the variance and

(2.7) blfa(2)] = Elfa(x)] — f()

is the bias of the estimate. Consequently if in addition to satisfying (1.8) the
constants h = h(n) are required to satisfy the condition

(2.8) lim, e nh(n) = o,

it then follows that f.(x) is a consistent estimate of f(x).

In the remainder of this paper we shall always be considering estimates of the form
of (1.7) in which K (y) is a weighting function [that is, an even function satisfying
(1.11)-(1.13) and (1.17)] and k is a sequence satisfying (2.8).

Since the estimate f,(z) may be written as an average,

@9) L@ = Ve, Ve = (/A0K(GE - X)/M0),

of independent random variables identically distributed as a random variable
V.= K({(x — X)/h(n)})/h(n), it is easy to state conditions under which the
sequence f,(x) is asymptotically normal, in the sense that, for every real num-
ber ¢,

(2.10) 11_1,2 P[fn(x)dgng[).);‘n(x)] < C:| — (2_”,)—% ]_: e—(%)y2 dy = a(c).

From Logve [3], p. 316, it follows that a necessary and sufficient condition for
(2.10) to hold is that, for every ¢ > 0,

(2.11) nP[w gen%]—>0, as n— o,
O‘[Vn]

A sufficient condition for (2.11) to hold is that, for some 6 > 0,

E|V, — E[V[*?
nG2 02+5[V"]

—0 as n— «,

(2.12)
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(213) E|V.[** = fw %K(” - y)

—0o0

Now
2

+38 1 ) o3
1) dy ~ s 1) [ RGP ay,

while by (1.2),
(2.14) AW~ /) [ Kw) .

Now the quantity in (2.12) can be written

WYEV, — BIV,)I"
(nh) @D p1+GR G2+, 17

which [in view of (2.13), (2.14), and (2.8)] tends to 0 as n tends to « since,
for every & > 0,

(2.16) [: K@) dy < o,

(2.15)

We have thus shown that the sequence of estimates {f.(x)} are asymptotically
normal, as well as consistent.

Some idea of the closeness of the normal approximation can be obtained from
the Berry-Esseen bound (see Loéve [3], p. 288): for a suitable constant C,

falz) — Elfu(2)] _ E|V,[}
P [ FIAC “] Ha) = C

sup
—w<a<n

ne¥[ V)

~ e AL E@ra) /{[ k@ ) |

3. Uniform consistency and estimation of the mode. In this section we deter-
mine conditions under which the estimated probability density function f,(x)
tends uniformly (in probability) to the true probability density function, in the
sense that (3.7) holds. Using this fact, we are able to obtain consistent estimates
of the mode.

It is convenient to introduce the Fourier transform

(3.1) k(u) = f_: ¢ “K(y) dy

of the weighting function K(y). We assume hereafter that k(u) is absolutely
integrable; note that this assumption holds for all the functions in Table 1 ex-
cept the first.

We may then express estimates of the form of (1.7) as weighted averages over
the sample characteristic function

(32) o) = [ dF, (@) = a3 6

k=1
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It is easily verified that one may write (since k(u) is even)
(33) fula) = ()7 S (e — X/} = @07 [ i) du.
It is clear that f,(x) is continuous and tends to 0 as x tends to =4 . Conse-

quently, there is a random variable 8, such that

(3.4) Tn(0n) = MAX_wcoco fo(T).

We call 6, the sample mode.

We next assume that the true probability density function f(zx) is uniformly
continuous in z (this is the case if it has an absolutely integrable characteristic
function) . It follows that f(z) possesses a mode 6 defined by

(3.5) f(0) = max_gcrco ().

We assume that 0 ts unique.
TreoreEM 3A. Consistency of the sample mode as an estimate of the mode. If h
18 a function of n satisfying

(3.6) lim,,, nh® = o,
and if the probability density f(z) is uniformly continuous, then for every ¢ > 0
(3.7 PSUp_w<oco fa(x) — f(2)| <  — 1, asn — o,

If { 6.} are the sample modes, and if the population mode 6 is unique, then for every
e>0

(3.8) Pllo, — 0] < ¢ — 1, asn — o,
Proor. To show (3.7), it suffices to show that

(3.9) litt v, B [SUP—sococn [fa() — F(2)[] = 0.

To prove (3.9), it suffices to show that

(3.10) B Sup_scocs [fa(2) — Elfa(®)][] 0,

as n — o, since by Theorem 1A [modified to take account of the uniform con-
tinuity of f(x)] it follows that

(3.11) 1im 0 SUP oo IE[an)] — f(@)] = 0.

Now

(812) Sup-wcoce [fo(@) = BUL@I| < @o)7 [ kO)len(u) = Bliu(w)]] du
Therefore, by Minkowski’s inequality, the quantity in (3.10) is no greater than
(319) @07 [ JO)lelin)) du 5 (W) [ k()] du

which tends to 0. The proof of (3.9) is complete.



1072 EMANUEL PARZEN

To prove (3.8), we first show that because f(x) is a uniformly continuous
probability density function with a unique mode 9, it has the following property:
for every ¢ > 0 there exists an 9 > 0 such that, for every point z, |§ — x| =
implies |f(8) — f(z)| = n.

If the assertion were false, then there would exist an ¢ > 0 and a sequence

{z,} such that
(3.14) If(6) — f(za)| <n™ and |0 — x| = e

Now (3.14), and the fact that f(z) — 0 as x — ==, implies that there exists a
point ¢’ > 6 such that f(6’) = f(6), which contradicts the assumption that f(z)
has a unique mode 4.

From this assertion it follows that to prove 8, — 6 in probability, it suffices
to prove that

(3.15) f(6.) — f(8) in probability as n — .

Now

(3.16) If(6.) — f(O) = [f(6.) — fa(6)| + Ifa(6n) — f(6)]

. < 2sup. fu(2) — f(@)],
since

fa(6x) — f(0)| = |supzfu(2) — sup.f(z)| < sup; [fu(z) — f(2)].
From (3.16) and (3.7), one obtains (3.15).

4. Limits for bias and mean square error. The properties of estimates f,(z) of
the probability density function of the form of (3.3) depend on the constant A
and the weighting function K(y). In order to gain further insight into this de-
pendence, in this section we see how the bias and mean square error of estimates
of the form of (3.3) depend on & and k(u).

Evaluation of bias. From (3.3) it follows that

Bl ()] = [ KK {2 = 9)/bif) dy

(4.1) .

= (2m)™ f_ R () (u) du.
Consequently
(42) MA@ = @07 [ e (k) — 1le(u) du.

Now let r be a positive number such that
(4.3) ke = limso {[1 — &(u)]/|ul’}

is finite. If there exists a value of r such that k., is non-zero, it is called the char-
acteristic exponent of the transform k(u), and k, is called the characteristic
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coefficient. If (4.3) holds then, as h — 0,

(44) bLf,;L(Tx)] = %r _: e k—(hlq;zil_ Ll o(u) du — k1 (2)
in which
(45) §O(2) = —(2m) [ : el o(u) du

where it is assumed that the integral in (4.5) converges absolutely.
To gain more insight into (4.4) let us examine in more detail the important
case of r = 2. Then

(4.6) l fP(z) = —(2r)7" [Q ¢ “lo(u) du

is the second derivative of f(x). The transform k(u) has characteristic exponent
r = 2 if the following conditions are satisfied:

(47) [k =0, [ K@)dy < .

Then, as u — 0,

0
0

0 — k)l = [0 = el K(y) dy

48) = (=12) [ K dy — [ 1T D) gy gy

) U
—(-12) [ PR dy = ha.

Thus if the integrals in (4.6) and (4.7) all converge absolutely the bias of the
estimate f,(x) satisfies

(410) (Blfa /) = = 357() [ K@) dy.
One may also obtain (4.10) directly since
(411) @R = [ K@) - wh) — @)/ de.

Evaluation of mean square error: We may now write an approximate expression
for the mean square error of the estimate f,(x) assuming that the transform k(w)
of the function K(y) used to form f,(x) has characteristic exponent r and
characteristic coefficient ., : '

(412)  E[fu () — F@F ~[f@)/ah) [ K*(y) dy + B lef O (@)
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Let us find the value of 4 which minimizes the mean square error for a fixed
value of n. The following lemma, is easily verified.
LemMma 4a. Let A, B, «, and (3 be given positive numbers. Then

min,s Az 4+ Bxf = A(1 + a/B) (BB/ad) af (a+f)
= (a _|_ '6){ (A/B)ﬁ(B/a) a}ll(a+ﬁ)
and the value of x at which the minimum s achieved is

(4.14) Tmin = (BB/ad)Yt®),

(4.13)

Consequently if one chooses h, as a function of =z, by
(4.15) b= 1) [ K dy)/in2r b O @)1,

then the mean square error

B |fa (2) = f(@)[' ~ (2r + D){[f (2) /n2r]

(4.16) .f°° K (y) dy)' f(r)(x)|2/(1+27)

tends to 0 as n~>/**®”_ In particular if » = 2, the estimates f.(z) have order of
consistency 7' in the sense that n'E |f.(z) — f(x)|’ tends to a finite positive
limit as n tends to .

5. Asymptotic normality of the sample mode. In this section we state conditions
on the constants h(n) and the kernel k(u) such that the estimated mode 6, is
asymptotically normal.

Consider a probability density function f(z) with a unique mode at 8. If f(z)
has a continuous second derivative, then

(5.1) () =0, f(6) <O.

Similarly if the estimated probability density function f,(x) is chosen to be
twice differentiable (that is, the weighting function K(y) is chosen to be twice
differentiable), then

(5.2) Fu(8,) =0,  fu(6.) <O,

if 0, is the mode of f,(z). By Taylor’s theorem,

(5.3) 0 = fn(6x) = f2(0)" + (6, — 0)77(6%)

for some random variable 6} between 6, and 9. From (5.3) one may write
(5.4) . 0 — 0 = —fu(6)/fn(6%)

if the denominator does not vanish. Using (5.4) as a basis, we now state condi-
tions under which the estimated mode 6, is asymptotically normal.
TuarEOREM 5A. Asymptotic normality of the sample mode. Suppose that there exists
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8,0 < 6 < 1, such that the transform k(u) has characteristic exponent r = 2 and
satisfies

(5.5) f wPk(u)| du < oo.

that h is a function of n satisfying

(5.6) limyenh® = ©,  limp.enh’™ =0,

and that the characteristic function o(u) satisfies

(57) [ o) du < .

Then as n — o,

(5.8) E[SUp—czce [fn(2) — [ (2)[] >0

(5.9) fre%y —17(0) in probability
(5.10) (nh®) ¥ (6) — N(0, £(8)J) in distribution
(5.11) (nk®) (6, — 6) — N(0, {£(6)/[f” (0) 13 J) in distribution,
where we define

(5.12) J=[ Ky = 2o [ ) du.

Proor. That (5.8) holds may be inferred from the following facts.

17 () = Bl @l < @0 [ k) ulon (u) — Elgw ()] du,
B upccoco [ (2) — BIF% @IF] < [ [Chat) oolpn ()] du
< (WK™ _/_‘w k() [v* dv,

B (2] = 57 @)] £ @0~ [ 11— k) o) du

That (5.9) holds follows from (5.8) and the fact that 6} tends to 6, since it
is between 6, and 6, and 6, tends to 6.
That (5.10) holds may be inferred from the following facts:

@) =7 NV, Va= B K10 X/,

V., independent and identically distributed as V, = (h*) K’{(6 — X)/h},
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K E| V. ™ — £(6) f_ : K ()" dy,

{E|V. — EIV,]|"" /n®P*[V,]} -0

f (8) — Elf. (0)]
alfn (6)]

(nkh®)*E[fs ()] = (nh*)*(—i/2r) [n e k(hu) — 1}up(u) du — 0,

)

—N(0,1) in distribution,

niVarlfy ) = 5 [ K*((0 — )/hi(y) dy — kB ()]

—10 [ K ay,

(nh*)¥f (8) — N(0,£(8)J).
Finally (5.11) follows by standard large sample theory from (5.8)-(5.10).
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