ON CONSTRUCTING THE FRACTIONAL REPLICATES OF THE
2m» DESIGNS WITH BLOCKS!

By M. S. PATEL?

Research Triangle Institute

0. Introduction and summary. The problem of constructing fractional repli-
cates of the s™ designs, where s is a prime power is not new in literature. There
are several papers which deal with this problem. However, so far as the subject
matter of this paper is concerned, the contributions made by Banerjee [2], Rao
[8], Dykstra [6] and very recently by Addelman [1] are of special interest. This
is yet another attempt in the same direction. The basic concept is the same as in
[8], where Rao gives a method of obtaining block designs for the fractional
replicates of the s™ designs so as to estimate the main effects and the two-factor
interactions orthogonally assuming all other interactions to be absent. With the
same assumptions, a method of construction is given in this paper which gives
in many cases block designs for the fractional replicates of the 2™ designs with
lesser number of treatment combinations than that of the corresponding frac-
tional designs given earlier. This is achieved by allowing the estimates to be
correlated. The scheme allows the estimates of treatment-effects and block
effects to be mutually orthogonal. An additional example is given at the end to
indicate the possibility of improving the construction.

1. Notations and preliminaries. Let the m factors of a 2™ design be denoted by

A, Ay, -+, Am and a treatment combination in which these factors appear
at levels 2;, 2, -+, Zm by
(1) at'ay’ -+ am® or (T, %2, , Tm)

where z; = 0, 1;7 = 1, 2, - -+, m. In what follows, (1) will also be referred to
as a treatment or an assembly. In accordance with the standard convention,
we shall denote a treatment or the mean response to a treatment by the same
symbol. Thus, if y(xy, 22, -+, Tm) denotes an observed response of the treat-
ment (1), then

(2) E[y(x17x2)"')xm)]=(xlaxza"'7xm)

where E stands for “expectation”.
Any effect in this experiment will be denoted by

(3) A;‘IA)Z\z,_,AZ\"m (>\i=0’1;i=1)27"'7m)’
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(4)

(5) H=<} _11>, H™ = H x H x -+ x H, m times.

and will be defined by the equation

0 ()@ x =) (1) (1)

as given by Bose and Connor [3], where

The symbol “ x ” stands for the symbolic Kronecker Product or Direct Product,
and I is the average of the mean responses of all treatments with the convention

(6) I-I=1 I-A=A4=4-1I, A° = 1.

If A, = 1 and the rest of the \’s are zero, then (3) represents the main effect 4, .
If A7 = A\, = 1 and the rest of the \’s are zero, then (3) represents the two-factor
interaction A;4, . Any other main effect or a two-factor interaction is similarly
represented. Assuming three and higher factor interactions to be absent, (4)
reduces to

(7) (561 y X2, * ", xm) =1 + 21 c(xi)Ai + ;, c(xi)c(xi')AiAi’
i,i'm],;,'-'.m
where ¢(z;) = —1whenz; = 0 and c(z;) = 1 whenz; = 1;¢=1,2,---, m.

The effects defined above are known as the Product Effects. With the help of
finite geometries, Bose and Kishen [4] defined the same effects in another way,
known as the Geometric Effects. Considering only the main effects and the two-
factor interactions, Connor [5] has shown that in a 2™ design, the main effects
have the same meaning in both definitions and the two-factor interactions differ
in sign only.

2. Orthogonal arrays and fractional replicates. A one-to-one correspondence
can be made between the assemblies of a 2™ design and the points of a finite
Euclidian geometry of dimension m denoted by EG (m, 2). An m — r flat Fp,_, in
this geometry is defined by a set of r linearly independent equations

(8) Ly = Gut1 + Gase + -+~ + GomTm = da(da = 071;0‘ = 1) 2) ,T).

There are 2™ points on F,_,. We shall say that an assembly of a 2™ design
lies on the m — r flat F.._, if the corresponding point of EG (m, 2) lies on it. The
necessary and sufficient condition that the 2™ points of F._, written as column
vectors, constitute an orthogonal array of strength d + 1 with 2™ assemblies,
m constraints, 2 levels and index A = 2™ %! denoted by (2", m, 2,d + 1)
is that every linear form > r—1 AaLo has at least d + 2 non-zero coefficients for
O‘ly Agy coey >‘r) & (07 07 Tt O)

The above result when the number of levels is s, where s is a prime power, was
first proved by Rao [8]. The linear forms L, (@ = 1, 2, - -+, r) will be called the
generating forms and will be said to generate the orthogonal array in the finite
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Euclidian geometry. In this sequel, orthogonal arrays will be referred to as
arrays. The array as defined above gives a 1/2" fraction of a 2™ design. To every
linear form L, , let there correspond an interaction of a 2™ design. Then Kemp-
thorne [7] has shown that the estimates of effects corresponding to any other
linear form L s ML; + AL; 4 -4 AL, from the fraction defined by (8) are
aliased with the estimates of the effects corresponding to

(9> L + (>\1L1 + >\2L2 +'+ err)
M, A2, oo, N) = (0,0, ---,0); Ae =0, 1; a=1,2 :--,7r

Thus what is actually estimated is not the effect corresponding to L but a linear
function of the effects corresponding to L and the linear forms (9). This grouping
of the effects can be determined from the identity relationship

(10) I=Gi=Gy=-=G=GG,= - =G_G=--=GG - G,,
where (s are the interactions corresponding to the linear forms in (8).

3. Construction of the fractional replicates with corresponding block designs.
A few lemmas and theorems on which depends the construction of the fractions
are given below. The actual construction follows from Theorems 3 and 4.

THEOREM 1. Let Lo = Qa1 + Gase + *+ + GanZm = 0 (@ = 1,2, --- | 1)
be the largest possible number of linearly independent equations in GF(2) whose
solutions constitute an array of strength 2 in EG(m, 2). Let U= (Ga1, @z, ** -,
Aam), and w (U,) = the number of nmon-zero coordinates of U, be defined as the
weight of vector U, . If & s the vector space generated by the U,’s, then in &, the

number of vectors of weight 3 whose tth coordinate ts unityis <r (t = 1,2, --- , m).
The proof of this theorem depends on the following lemma.
Lemma 1. If Uayy Uay, -+, Us, are the vectors of weight 3 in & whose ith
coordinate vs unity, then they are all linearly independent (7 = 1,2, --- , m).
Proor. If not, there exist constants by, by, - - - , by not all zero such that
banl + bZUag + R blcUak = 0.
But this is impossible since no two of the vectors Uy, , Ua,, -+, Uq, can have

unity as coordinate at the same place except the 7th. This can be seen easily
from the well-known result

(11) wVi+ Vo) = w(V1) + wVe) — 2w(ViVy),
where Vl = (du, d12, ey d1m), V2 = (d21, d22, Tty d2m>, and V1V2 =
(dudar , diodas, - -+, dimdam). Now suppose two of the vectors, say Ua, and U,, ,

have unities at the ¢th and ¢'th places ( = ¢ = 1, 2, ---, m) and the third
unity occurs at different places, then

W(Ua + Us) =3+3—(2X2) =6—4=2

which implies that the vector Ua, + U,, does not belong to £, , a contradiction.
Hence the lemma.



FRACTIONS OF 2™ DESIGNS WITH BLOCKS 1443

Proor or THEOREM 1. The proof now follows immediately. Since the &k vectors
of weight 3 in £, are linearly independent, they form a sub-set of the basis of the

vector space generated by the U.’s (@« = 1,2, - - -, r) which implies that kis <r.
CoROLLARY 1. In &, the number of vectors of weight 4 whose ith and 7'th co-
ordinates are both unity ¢s <r (i = ¢ = 1,2, ---, m). The proof is similar to
that given in Lemma 1 for vectors of weight 3.
Consider again the r linearly independent forms L.(a = 1, 2, ---, r) in
GF(2) as given in Theorem 1. Let S denote the set of treatments
(x1, 22, + -+, Tm) which satisfies the equations L, = e, (@ = 1,2, --- , r), where

the e.’s are elements of GF(2) and all operations are in GF (2). For any linear
form L, the corresponding treatment comparison will be conveniently denoted
by T(L). For example if L = x; 4+ z», T (L) will mean the interaction 4,4, .
The estimate of T (L) from the fraction of the 2™ experiment containing only
the treatments of S is given by

N
(12) T@) = @ N7 (L=14N 28 — (L=0}N 8]

where {L = ¢}; ¢ = 0, 1, means the set of points (treatments) satisfying the
equation within the curly bracket in GF (2); {L = ¢} NS means the set of treat-
ments common to the two sets {L = ¢} and S; ({L = ¢} N S) means the sum of
the responses of treatments indicated.
. N

TaroreM 2. E[T(L)] = Y, (—1)¥c(\'e)AT*A% ... A%, where the summa-
tion is over all the 2" wvectors N = (A, Ae, ceoy N, d; ts the coefficient
ofx; (1 =1,2, -+, m) in the linear form L + (MLi + NL: + -+ + L),
w s the weight of the same linear form or of the corresponding coefficient-vector

(di,dy,  ,dm), Ne=Nes+ Ney + -+ + N, and c(Ne) = —1 or 1 accord-
ing as N'e = 0 or 1 as defined in (7).

Proor. The expectation of the observed response y (x1, 2, +++, Tnm) of the
treatment (z;, 22, -+, Tm) is given by
(13) Ely(z:, 22, -, zm)] = [T I + c(z:) 44

1=1
which follows from (4). With the help of this expectation equation, we shall
N

determine the coefficient of A$*4% ... A% in the expectation of T'(L) for any
arbitrary linear form dix; + dex: + -+ + dwZn . First we notice that if the
linear form dix; + doxz + -+ + dnZm is not of the form

L+ ()\1L1 + >\2L2 + cee + >\rLr),

then in the coefficient of A3'A3? --- Aa", there will be 2™ "' plus signs and
2™~! minus signs and hence the required coefficient is zero. Next consider a
linear form

dixy + doxy + -+ F dnm = L + MLy 4 NLe+ -+ + AL.).
Case (1).\'e = 0. The weight of the linear form is w. For the sake of definite-
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ness, suppose d; = dy = - -+ = d, = 1. Then for any treatment (z;, 22, -+ ,Zm)
belonging to {L = 1} NS, we shall have 2; + 2, + -+ 4+ z, = 1. So among
Ti, Tz, -+, Tw an odd number would be equal to 1.:Therefore from (13) it fol-
lows that the contribution to the coefficient of A14% ... A% = A%14% ... g%
from the response y (1, 2, - - , Zm) of any treatment (z;, 2, - , m) belong-
N
ing to {L = 1} NS in T (L) would be
(14> (2m—r> -1 (_ 1) w—(2¢—1) —_ (2m—r) —1(_ l)w — (21»—7)—10 ()\,3) (_ 1) w’

where ¢ is a positive integer.

Similarly for any treatment (z;, x2, -+, =) belonging to {L = 0} N .S, we
have r; + 2o + --- + z» = 0. Hence an even number of 2’s would be 1. This
means that the response of any treatment belonging to {L = 0} NS would con-
tribute

(15) —@" )= = @) e(Ne) (-1)"

N
to the coefficient of AT*43? --- A% in the expectation of T(L). Finally remem-
bering that there are 2™ treatments in S, we obtain from (14) and
(15) c(\'e) (—1)" as the required coefficient of A3'A3? - - - A% in the expression
PORS

for the expectation of T'(L).

Case (2).Ne = 1. The coefficient of AT*4%? - - - A% in this case can be derived
by arguments similar to those in case (1). This completes the proof of Theorem 2.
In what follows, the set of treatments, S, and the corresponding array in the
Euclidian geometry will be denoted by the same symbol.

THEOREM 3. Let Ly = @u®1 + Qa2 + -+ + GamZm (@ = 1,2, -+ | 1) be the
generating forms for a class of arrays, each of strength 2 in EG(m, 2). There are 2"
arrays in the class. Let r + 1 of these arrays be given by the equations

LerX1DJAXr+1) =[0( X1),60 Xr)]

where L(r X 1) = Ly, Ly, -+, L)', JA X 7 F 1) is a row vector of 1’s,
0(r X 1) 7s a column vector of null elements, 6 (r X r) is a non-singular matriz of 0’s
and 1’s in GF(2). Then, the fractional replicate of the 2™ design consisting of the
assemblies belonging to the (r 4+ 1) arrays defined above estimates the main effects
and the two-factor interactions, all other interactions assumed to be absent.

Proor. Let us denote the r 4 1 arrays by So, Si, Sz, ---, S and the frac-
tional replicate by S. Then S = U, S, and the fraction consists of the
(r + 1)2™" assemblies of the 2™ design. The array S, corresponds to
LJ(1 X 1) = 0(r X 1) and the array S, (u = 1, 2, ---, r) corresponds to
LJ(1 X 1) = &, where §, is the uth column of §(r X r). Since each is an array
of strength 2, the fraction S obviously estimates all the main effects. Next con-
sider the two-factor interaction T (L). There may be three cases:

Case (1). T(L) is not aliased with any main effect or a two-factor interaction
In this case T (L) is estimable.

Case (2). T'(L) is aliased with a main effect A;, . Suppose T'(L) = A;,4,, .
Then there exists (A1, Mz, -+, Air) such that L + AyL; + MoLe 4+ -+ +
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AL, = z;; . Therefore’
(16) Mila + oL + -+ A4 MeLy = 4 + 24y + 25, .

Suppose the interactions A:,As; , AyAiy, -+, AiAiy,,, are also aliased with
A;, . Then, from Lemma 1 and Theorem 1, it follows that all the indices 4, , s,
«++, 41 are distinet and k£ < r. Suppose

AaLly + NeLe + -+ 4+ NoLy = x4y + 24, + 745,
Aaly + NaeLy + -+ 4+ NoeLy = x4y + 24y + x4y,
(17) ) . . .
Naln + MeoLy + -+ -+ + NeoLy = T4y + Tiy, + Tigyy, -

Then, from Lemma 1, the linear forms on the right-hand side in (16) and (17)
are mutually independent. So the matrix A\(k X 7) = ((N\ja));5 = 1,2, - k;
a=1,2, .-, ris of rank k. Premultiplying the equations defining the arrays
by A(k X r), we get

AMEXr)L(r X 1)J(A Xr4+1) =[0(F X 1), Ak X7r)é@ X )]

= [O(k X 1)) V(k X T)], say,

(18)

where all operations are in GF(2). The matrix »(k X r) = ((vju)) where
viuw=0o0rl;5=1,2,---k;u=1,2, ---ris of rank k. Without loss of gen-
erality, we shall assume that the (k X k) principal minor

(19) VP=((VJ'u)); j=1’2:"';k;u=1127"'7k

is non-singular. The linear forms given by A(k X r)L(r X 1) are the same as
those appearing on the right-hand side in (16) and (17).

Suppose T'. denotes the estimate of A;, based on the fraction S, . The weight
of the linear form representing a two-factor interaction is 2. Hence, we get from
(18) using Theorem 2

T() _ Ail
T EL ] (Celin)) '
T 1 k AizkAizk.u

The matrix in the equation (20) is non-singular since its determinant is equal to
2° X det ((vju)), i.e., 2° X det v, which is 0. Therefore A;,4;, is estimable.

Case (3). A, A, is not aliased with any main effect but is aliased with a two-
factor interaction. Using the argument similar to that in case (2), we can easily
establish the estimability of 4,,4;, with the help of Corollary 1 and Theorem 2.

As a special case, we may take 6(r X r) = I(r X r), i.e., a diagonal matrix
with unit elements and the theorem holds.

THEOREM 4. If the assemblies belonging to each of the (r + 1) arrays as given in
Theorem 3 are assigned a block, then in the resulting fractional replicate of the 2™
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design in (r + 1) blocks, all main effects and the two-factor interactions are estimable
with their estimates correlated in sets but orthogonal to the r block conirasts.

Proor. Let (S.) denote the sum of the responses of the assemblies in the
array S, (u =0, 1,2, -+, r). These will then be the (» 4+ 1) block totals in
some order. The r linearly independent contrasts between the (» + 1) block totals
represent linear functions of interactions corresponding to the linear forms

MLy + XLy 4+ -+ 4+ N L
()‘I’A27""AT)?£(0707""0); A =0,1; a=12 ---,r

each of weight =3 (by the condition of the theorem) and the contrasts between
the block effects. This implies that the interactions corresponding to the linear
forms in (21) are mixed up (or confounded) with the contrasts between the
block effects.

Next the r linear forms L, (e = 1, 2, ---, r) partition the effects of the fac-
torial experiment in alias sets, the estimates of any two effects belonging to
different alias sets being orthogonal. From this it follows that the estimates of
the main effects and the two-factor interactions of the 2™ design are orthogonal
to the estimates of the interactions corresponding to the linear forms in (21)
since they belong to different alias sets, which in turn implies that they are
orthogonal to the r block contrasts. That they are estimable follows from
Theorem 3.

(21)

4. Examples. The usefulness of Theorems 3 and 4 is indicated by the examples
given in this section.

ExampLE 1. 1/2 fraction of a 2° design in 4 blocks of 8 assemblies each. The
fraction S consists of the arrays Sp, S;, Sz, S; given by

T+ 22+ 73

x4 @+ |[1,1,1,1] = [0(8 X 1),1(3 X 3)].

T2 + x4 + Zs
Assigning S, Si, Sz, S; to different blocks, we get the required block design.
The identity relationship for the fractions defined above is

I = 414,45 = A1A4As = A2Asds = AsA3A A5 = A1 43444,
= A1A2A5A3 = A3A5Ae .

Hence, the sets of aliased effects are (1) {41, 4243, A4ds}, {42, A1ds, AsA4},
{As, A145, A246}, (2) {As, A1ds, AsAe}, {As, A1As, AsAg}, {As, A2y, AsAs).
The effects A;As, A2As, AsA4 are estimated orthogonally. Following the model
(7), the normal equations which give estimates of the effects are
AN
[ 32 —16 —16]|| A Y(4)
/\
32 0 || A5 | T | Y(A4;) P
[Sym.

N
32 || A.A, Y(A.d5)
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and

VAN
32 —16 —16|| 4, Y(4;)
VAN
32 0 A1A, | = | Y(Ai14,) |
VAN
Sym. 32 || A4s4s Y(ABAB)J

where /\ above the effect means the estimate of that effect, and ¥ (411432 - - 4}
denotes the linear form of the observed responses on the right-hand side of the
‘normal equations corresponding to the interaction A)'A32- - - A3™. The first equa-
tion holds for any set of effects in (1) and the second equation, for any set of
effects in (2). After inverting the matrices, we get

AN

A; 4 2 2 FY(AI)

A1

A/2<13 =& 3 1| Y(4:4y) p
and

~ _

A3-| [4 2 —2|| vy

VAN 1

A/léz J=6—4[ 3 —1||Y(4:14,) J

Asds Sym. 3 1LY (454,)

The grand average I is estimated by G/32 where G is the total response of all
assemblies. In what follows, the term ““correlated effects’ will be used for “aliased
effects’ since the effects are estimable. The inverse matrix provides the estimates
and also the variance-covariance matrix of the corresponding estimates. For
each set of effects in every group, there is just one inverse matrix.

The model (7) may be modified to allow for block effects assumed to be fixed
and unknown. The contrasts between block effects being orthogonal to the treat-
ment effects by Theorem 4, the error sum of squares S, is calculated from the
formula

32 3 6 /\ VAN
8. = ; yi — 2 (8.)%/8 — [; A;Y(A) + 2 AiAz-,Y(A,-Am],

=0 i<’
(i:i, = 172: e 76)

where y; is the observed response of the fth assembly and (8,) is as defined in
Theorem 4. With this value of S, , the “#’” test for testing the significance of any
main effect or interaction can be carried out as usual.

ExampLE 2. 5/16th fraction of a 27 design in 5 blocks of 8 assemblies each.
The generating forms are Iy = 21 + &4 + 25, Lo = -1 + 23 + 27, Ly = 2, +
%2 + %6, Ly = x2 + 23 + x4 . The fraction and its corresponding block design are
obtained as in Theorems 3 and 4.
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The sets of correlated effects are (1) {A;, 4445, 4246, A3A7} (2) {A2, 454,
Ade, Add), (A, Asds, Aidr, Ade), {As, AsAs, ArAs, AsAs}, (3) {As, AsAs,
AgAs ) A2A7}, {As ’ A1A2 y A3A5 , A4A7} {A7, 1A3 , A4A3 y A2A } Their estimates
can be worked out using model (7).

ExampLE 3. 5/32nd fraction of a 2° design in 5 blocks of 16 assemblies each.
The generating forms are Ly = @y + 22 + 23, Lo = 21 + x4 + 25, Ly = 2, +
s + @7, Ly = 21 + 23 + 29, Lg = 22 + x4 + 26 . The fraction and its corre-
sponding block design consist of arrays given by the equations

LGB X1)J(1 X5) =1I(5XD5).

This follows from the special case of Theorem 3.

The sets of correlated effects are (1) {A;, AsAs, A4ds, Aedr, Asdo}, (2)
{ds, A1d;, Ads, AsAd}, {As, Aids, ArAs, AsAd}, {As, A1A7, AsAs, A4S,
(3) {43, A14,, AsAs , AsAd}, {45, AhAﬂhAMﬂ{m,lAmAmhAﬁm
(4) {A8 ) A1A9}7 {A9 ) 1A8} (5) {A4A8 ) } {A4A9 ’ A5A }7 {A2A8 ) A3A9}:
{AsAs, AsAs}, {AsAs , ArAs}, {Asdy, 7A8}

For any other value of m, a corresponding fraction can be obtained similarly.

6. Remark. It should be noted that the assemblies given by the r 4+ 1 arrays
in Theorem 3 are sufficient in order to estimate the main effects and the two-
factor interactions. However, it is not necessary to have all of them and in fact
they may be selected in a different way as shown by the following example.

ExampLE 4. 3/16th fraction of a 2° design in 3 blocks of 32 assemblies each.
The fraction S consists of the arrays S:, S;, S; given by

1+ 22 + x5 + 28
[x1+x4+x7+xo
[x2+x5+x6+x9
To + 23 + x4 + x5

The blocks correspond to S;, S:, Ss. The sets of correlated effects are (1)
{A1A2 ) A3A8}’ {AIAG ) A3A7}7 {A1A9 ) A4A7}7 {A?A4 ) A3A5}1 {A2A9 ) A5A3}7 {A5A7 )
A8A9}1 (2) {A1A5 ) A4A8}7 {A2A7 ) AGAS}) {A3A9 ’ A4A6}7 (3) {A1A3 ’ A2A8 ) A6A7}1
{A1d7, A3As, AsAo}, {AsAs, AsAs, AcAo}, {414y, AsAs, A1A4}, {As43 , A1ds,
AAg}, {AsAy, A2Aq, ArAg).

Each set of effects in (1), (2) and (3) is estimated by the matrices

13 -1 131
2~5€[—1 3}’ 2) zﬁ[l 3]’ and

(1) 2 -1 —11
3) 5| -1 2
_]

respectively. All main effects are estimated orthogonally.

,1,1] =

— oo
o= OO0

(=i R



FRACTIONS OF 2™ DESIGNS WITH BLOCKS 1449

The technique of estimation is not essentially different from that given in
Theorem 3. Consider for example, the set of aliased effects 4,45, A245, AgA;in
(3). The linear forms connected with these effects give the equations

21+ 22 + 23 + 010
[1) 17 1] =
2+ 23 + ze + 7 0 01
as associated with the arrays S;, Si, S;. The 6(2 X 2) matrix on the right is

the unit matrix I (2 X 2). Hence, these effects are estimable. Similar argument
holds for every other set of effects in (1), (2), and (3).
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REFERENCES

[1] AppELMAN, SIDNEY (1961). Irregular fractions of the 2™ factorial experiments. Tech-
nometrics 3 479-496.

[2] BANERJEE, K. S. (1950). A note on the fractional replication in factorial arrangements.
Sankhya 10 87-94.

[3] Bosg, R. C. and ConNor, W. S. (1960). Analysis of fractionally replicated 2» X 3m»
designs. Bull. Inst. Internat. Statist. 837 3eme Livraison, Bruzxelles 3-22.

[4] Bosg, R. C. and KisHEN, K. (1940). On the problem of confounding in the general
symmetrical factorial design. Sankhya b 21-36.

[5] ConnoR, W. S. (1960). Construction of fractional factorial designs of the mixed 273"
series. Contributions to Probability and Statistics, 168-181. Stanford University
Press. Stanford, Calif.

[6] DYkSTRA, JR., O. (1959). Partial duplication of factorial experiments. Technometrics 1
63-75.

[7} KeMPTHORNE, O. (1947). A simple approach to confounding and fractional replication
in factorial experiments. Brometrika 34 255-272.

[8] RapHARRISHNA RAo, C. (1950). The theory of fractional replication in factorial experi-
ments, Sankhya 10 81-86.



