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1. Introduction and summary. The history of fiducial probability dates back
over thirty years and so is long by statistical standards; however thirty years
have not proved long enough for agreement to be reached among statisticians
as to the derivation, manipulation or interpretation of fiducial probability.
The reason for this lack of agreement and the resulting controversy is possibly
due to the fact that the fiducial method has been put forward as a general logical
principle, but yet has been illustrated mainly by means of particular examples
rather than broad requirements. This paper explores in two respects certain
natural general requirements for the application of the fiducial argument in the
bivariate case that have been proposed.

An essential step in the process of fiducial inference is the derivation of the
fiducial distribution. Properties that have been emphasized by Fisher in order
that a genuine fiducial distribution may be obtained include sufficiency, the
absence of any a prior: information and the existence of a pivotal quantity.
About ten years ago examples were discovered demonstrating that the dis-
tribution induced by a pivotal, sufficient and smoothly invertible set of quan-
tities is not necessarily unique; that is to say the induced distribution depends
on the particular set of pivotal quantities chosen (see [50]). The pivotal quan-
tities used in these examples were denounced as having been “artificially con-
structed” (see [15]), and additional requirements were proposed. In the bi-
variate case requirements reduce to either

f(x’ ylay B) =f(x7 a)f(ylx) a, ﬁ))

or
f(il), Yy I 2] ﬁ) = f(x: Q, B)f(y l z, ﬁ):

f(z, y|a, B) being the given density. However as will be seen in this paper,
neither of these requirements is sufficient to ensure the uniqueness of the result-
ing distribution.

It may be argued (see [11]) that non-uniqueness of the induced distribution
is no handicap. It is, however, more than intuitively appealing to feel that if
one starts with a problem perfectly symmetrical in the parameters and the ran-
dom variables, as the examples presented are, then the answer should be per-
fectly symmetrical as well.

Recently Lindley proved a theorem in the one-dimensional case to the effect
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that a fiducial distribution is Bayes’ posteriori if and only if the c.df. is in-
variant under a continuous one-parameter group of transformations. It is nat-
ural to seek an extension of this theorem to the multi-parameter case, for if it can
be shown that there is a group of a certain form, then there exists an essentially
unique pivotal, a frequency interpretation and certain consistency properties
(see [21]).

It is known in the multi-parameter case that if the c.d.f. is invariant under
a particular type of group, then the fiducial distribution is Bayes’ posteriori.
However the final example presented in this paper demonstrates that a bivariate
fiducial distribution may be Bayes’ posteriori without possessing strong group
invariance properties.

2. The one-dimensional case. The simplest situation to which the fiducial
argument may be applied is the case of a single parameter 6, and a single suffi-
cient statistic T, for that parameter. There is little controversy over the actual
fiducial distribution obtained in this case, probably because of the following
reasons: (i) one can show that any pivotal quantity must be a function of the
c.d.f. F(T, 6), and consequently the fiducial distribution is unique, and (ii)
any a% fiducial interval derived from the fiducial distribution is actually an
a% confidence interval in the sense that if

Prf(aal(T) =60= oaz(T)) =qQq — o = «a

then,
Pre(0.,(T) £ 0 £ 02,(T)) = a1 — 2 = «,

Pr; denoting probabilities derived from the fiducial distribution and Pry prob-
abilities derived from the distribution of the random variable T'. (Both of these
results have been in the air a long time and the reader should be able to verify
them easily.) However there certainly is controversy over the use and inter-
pretation of the fiducial distribution in this case.

The accepted formula for the fiducial distribution in the one-dimensional
case is that given by Fisher on p. 70 [15], namely,

— (3F/a0) db

where (i) F(T, 6) denotes the c.d.f. of a sufficient statistic T, (ii) 6 and T vary
continuously over the same range, and (iii) F is a monotonic function of 6 and
T, a decreasing function of 6. (These are Fisher’s conditions.) The above formula
will be taken as the definition of the one-dimensional fiducial distribution in the
rest of this paper.

3. The multi-dimensional case. A variety of methods and conditions have
been proposed in order to derive multivariate fiducial distributions. The first
method seems to have been to obtain the distribution by means of pivotal quan-
tities, see [42] for example. However it was noticed by several people that if one
defines a fiducial distribution simply as one induced by a set of pivotal quan-
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tities, then non-uniqueness may result, see [50]. The existence of such examples
inspired various authors to propose additional conditions that must be satisfied
in order to obtain a unique fiducial distribution.

Fisher in [15] gave examples of the derivation of multivariate fiducial dis-
tributions. If z, y are random variables with bivariate density f(z, y, «, 8);
these examples, (pp. 159-162, 169-171 in [15]), seem to indicate that Fisher
would require the density to have the property

(1) f(z,y, &, B) = f(x, a)f(ylx) a, B).

The fiducial distribution is then derived as follows: from f(x, ) find the fiducial
density for «, a univariate problem. Now considering « fixed, find a fiducial
density for 8 from f(y | z, @, 8), a univariate problem once again. The required
joint fiducial density is the product of the above two densities.

Quenouille (see [37]) in contrast to Fisher, requires that the density should
factor as follows:

(2) f(@,y, @, 8) = f(=, &, O (y |z, B).

He justifies this factorization by means of the following sufficiency arguments:
x is sufficient for «; therefore for fixed 8, F(zx, «, 8) may be used to obtain the
fiducial distribution of a given 8. Now with z fixed, y is quasi-sufficient for 8;
therefore F(y | z, 8) may be used to obtain the fiducial distribution of 8. Once
again the required joint fiducial distribution is the product of the two individual
fiducial distributions.

In the case of independence, factorizations (1) and (2) reduce to the same
thing. This is what happens if one seeks to determine the joint fiducial distribu-
tion of u and ¢” in the normal case for example.

Unfortunately in the case of non-independence, neither factorization (1)
nor factorization (2) is sufficient for a unique fiducial distribution to be ob-
tained. Examples of non-uniqueness will be presented, and these examples will
be such that, (i) the statistics involved are sufficient, (ii) the statistics and
parameters have the same range, (iii) the pivotal quantities are monotonic in
statistics and parameters, and (iv) all the fiducial distributions involved are
proper distributions.

Let (z, y) have the following c.d.f.,

F(x) y) = (]. — e—az)(l — e—ﬁﬂ)(l _ 'Ye_¢z_‘w)’

for z, y, @, 8 > 0; ¢ a function of a, u a function of 3, ¥ a constant to be specified

later.
Let us now proceed to derive the joint fiducial distribution of « and 8. Firstly

the marginal distributions of x and y are
(3) Fiz) =1—¢ and F(y) =1—¢™

respectively. Consequently the factorization (1) obtains, and more importantly

4 Alidninn fanm hath Af 4ha ansmhinadianag Af mandanmm sraniahlac and manamandbans
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One may easily show that
(4)  Fylz) = (1= ™)(1 — 7" ™1 = ($/a)(e™ — 1)}).

The marginal fiducial density of « is easily derived from (3). It is ze  “". The
fiducial density of 8 given z, y, « is easily derived being oF (y | x)/a8.

The required joint fiducial density is the product of the above two densities.
It is

zye (1 — ye @O EIY T (g/a) (1 — )}
{e™ — (u/aB) (1 — ¢ )})

¢, u, v may now be chosen such that conditions (i) to (iv) are satisfied. Ex-
amples of such a choice are

$=a(l+e®) u=p1+e?) hl =i

However with this choice, (5) is not a symmetric function of (z, «), (y, 8)’
whereas the c.d.f. was. The fiducial density obtained consequently depends on
the marginal that one starts with and we have a counter-example to the as-
sumption of uniqueness when the factorization (1) obtains.

One can easily see that a sufficient condition in order for a fiducial distribution,
obtained in this case, to be unique is that the c.d.f. be a function of the marginals
alone; however this condition is not necessary.

An example demonstrating that factorization (2) is not sufficient to ensure
uniqueness has already appeared in the literature, see [50]. It is the following
one, and is due to L. J. Savage: 0 < z, y, o, 8 < « and (z, y) has density

f(z, y, @, B) = [@8"/(a + B)I(z + y)e™ .
(2) is satisfied because
fy =) = B™/(1 + )z + v),

and it is seen that this example satisfies the rest of the stated properties (i) to
(iv) as well, but yet does not lead to a unique fiducial distribution.

()

4. Multivariate fiducial distributions and Bayes’ theorem. In a recent paper
[30], Lindley proved the following theorem concerning 2, a one-dimensional
random variable, whose distribution depends on a single parameter .

TaEOREM. The necessary and sufficient condition for the fiducial distribution of
0, given x, to be a Bayes’ distribution s that there exist transformations of x to w and
of 0 to 7, such that v is a location parameter for u.

Let us look for a multivariate generalization of this theorem. A natural gen-
eralization of the transformations described in Lindley’s Theorem to the 2-
dimensional case is the following: there exist transformations = to a(z, y, u, v),
y to b(z, y, u, »), a to ¢c(e, B, u, ») and B to d(a, B, p, v), forming a group for
arbitrary parameters u, », and such that the c.d.f. satisfies F(z, y, a, B) =
F(a, b, ¢, d). If the transformations are continuous, they are said to form a
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2-parameter continuous transformation group or a 2-parameter Lie transforma-
tion group.

An example will now be presented of a bivariate fiducial distribution, derived
from a density satisfying both factorization (1) and factorization (2), that is
Bayesian posteriori, but yet that is not invariant under any two-parameter
continuous transformation group.

Consider the following bivariate c.d.f.

H(z,y) = 1/(1 + ¢=%)(1 + ¢ *@u+d)y

where — 0 < z, 9, o, 8 < ® and ¢ > 0 will be specified later. This example
satisfies both factorization (1) and factorization (2), and the joint fiducial
density of « and g is easily found to be

(6) ¢(a)e—(x+a)—¢(a)(v+ﬂ)H2-

Providing ¢() is selected such that the above density is integrable in « and g,
it is easily seen that (6) equals

h(.’l?, Y, a, ﬁ)/fh(x, Yy, a, B) da dﬂ)

i.e., the fiducial density is Bayes’ posteriori with uniform prior density. An
example of a function ¢ of the required type is ¢(a) = 2 + [o/(1 + o)1
To prove that H(z, y) is not invariant under any two-parameter continuous
transformation group the following theorem proved in [8] is required.
TaeorEM. The c.df. H(z, y, a, B) is tnvariant under a local two-parameter
continuous transformation group, if and only if there exist linearly independent

(e(=, ), n(z, ), ala, B), b(a, B)),  (&(z, y), 7(2, ¥), a(a, B), b(a, B)),
each component being an analytic function, such that
eH, + nH, + aH, + bHg = 0, éH, + 7H, + éH, + bHs = 0.

Applying this theorem to the particular case under consideration, H(z, y) is
invariant under some two-parameter group of transformations only if there
exist e(z, ), 7(z, ¥), a(a, B) and b(e, B) such that

(e+a)/( + 1) = —{n+ b+ a(é'/®)[(y + B)s/(*"*® + 1)]}.

Consider the implications of this relation by differentiating it with respect
to z, then with respect to 8 twice. Combining the relations obtained in this
fashion one sees first of all that ag = 0 = 7, . Using these results one sees that
e = K + R,a = Ke* — R, K and R being constants. Substituting in the
original relations one finds that K = 0 = R implying 4 4+ b = 0, each being
a constant. We have found therefore, ¢ = 0, n = C, a = 0, b = —C are the
only functions compatible with the given relation. H(z, y) is therefore invariant
only under the one-parameter transformation group y —y + 4,8 — 8 — A.

The given example therefore provides a counter-example to the proposed
extension of Lindley’s Theorem. ‘
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