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1. Summary and introduction. It is known that if X and Y are independent
random variables having a Gamma distribution with parameters (6, n) and
8, m), i.e., with density function

0n/2xn/2—le—(§)0:c

p(x707n)='—2my 0<$,0;1§’n,

then X 4+ Y and X/(X + Y), or equivalently X/Y, are statistically inde-
pendent. Lukacs [1] proved that this independence property characterizes the
Gamma distribution, namely, if X and Y are two nondegenerate positive random
variables, and if X + Y is independent of X/(X + Y), or equivalently of X/7,
then X and Y have a Gamma distribution with the same scale parameter.

In the present paper we present an extension to the case where U and V are
symmetric positive definite matrices having a Wishart distribution. A number
of difficulties are encountered in the generalization. First, there is no natural
extension of a ratio, and we consider Z = W UW'™, where the “square root”
W = (U + V)!is any factorization WW’ = (U + V). In the matrix case Z is
not a function of VUV as was true in one dimension, and indeed if U and V
are independent random matrices having a Wishart distribution, U + V and
VUV need not be statistically independent, depending on which square root
is chosen. This aspect will be treated in another paper.

In the univariate case it is relatively straightforward to generate differential
equations by differentiating under the expectation sign, but this is no longer
true since the elements of (U + V)} do not bear a simple relation to the elements
of (U + V), and it is this point which leads to the difficulties in the proof. The
characterization theorem is stated in Section 2. In Section 3 the differential
equation is set up, and is solved in Section 4.

The authors are indebted to Martin Fox for his comments and suggestions.

2. Characterization of the Wishart distribution. We write X ~ W(4, p, n),
(m>p—1,A:p X p, A > 0), to mean that X is a p X p symmetric matrix
with density function

(1) p(X) = olA|"?|X|rDIz BT, x>0
where

4
¢t = 2P PP VRIT T3 (0 — 4 + 1)1
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The characteristic function (c.f.) is
Ee™™* = |AI"* |A — 24, for A symmetric.

If n < p, n integral, then this expression is the c.f. of a Wishart d.f., but for
any fractional » < p — 1, it is not the c.f. of a d.f. (See Appendix.)

The following theorems characterize the Wishart distribution.

THEOREM 1. If U ~ W(A, p,n), V ~ W(A, p, m) are independently distributed,
then U +V = WW and Z = W UW'™ are statistically independent. Further-
more, the distribution of Z is invariant under the transformation Z — T'Z I", where
T ¢s orthogonal.

The proof of this theorem is straightforward, and will be omitted.

TurorEM 2. If U and V are p X p positive definite matrices which are inde-
pendently distributed, and (i) U + V = WW’' is statistically independent of
Z = WI'VW', (ii) the distribution of Z s invariant under the transformation
Z — TZT', where T is orthogonal, then U and V have a Wishart distribution with
the same scale mairix.

The proof is given in two parts: (a) derivation of the differential equation,
(b) its solution.

3. The differential equation. From the independence hypothesis we have
Eetr(AW +BWW' +c2) _ Eetr(AW + BWW') E(etr cz)

= f(4, B) ¢(C),

where A, B, and C are p X p matrices, and ®(B + B’) is negative definite.
The motivation for using the particular form of equation (2) is twofold:
(i) the conditions on B are such as to permit differentiation, (ii) the inclusion
of A permits the derivation of certain relations, since differentiating twice with
respect to the elements of A and summing is equivalent to differentiating once
with respect to the elements of B.
We adopt the following notation:

fii =a_f_ f‘l.] _ af _ ag

aaij’ abij g acij

(2)

The indices using Greek letters will generally be those which are summed.

Since we can differentiate under the expectation sign, there is a relation be-
tween second derivatives with respect to A and first derivatives with respect to
B, namely,

3) o9 __ 0 9
a aamaaja Oty -+ - atq ab,-,- aty - atq’
where #;, -+, t; are any (not necessarily distinct) arguments of f.

We now obtain a consequence of the assumption of orthogonal invariance.
Lemma 1. If

(4) 9(C) = E exp tr CZ = E exp tr CT'ZT = ¢(TCT’),
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for all orthogonal matrices T, then

8g(C)
¢y le=0
(6) giix1(0) = c8:0r + cs(8undsn + 0idjn),

where ¢, , ca, c3 are constants and d;; is the Kronecker delta.
Proor. We first note that by considering permutation matrices I, that

(5) 9:i;(0) =

= €104 ,

Gii = §iis Jijkl = Gije = Gr1,i5 = etbe.

By choosing vi; = 1, v;; = —1, gij = —gi; , which yields (5).
By considering reflections,

Giiii = Giigk = Gije = Gigr = 0.

For example, vii = vj; = 1, v = —1 yields gij,ic = —gij. . From (4) we
obtain
(7 Gij k1 = HZS YiaY i8YkvY1s JaB b -

a,p, Yy

We now set up the table of values of gi;«: by the nature of the indices:

T g
gt dy
10,jj de
’L] 77'.7 d3
Set I' = exp ¢ =, where Z is skew-symmetric. Let &;; = —£;: be the only non-

zero elements of =, then the first order terms of ¢ in (7) for g:: ; yields
0 = Z vYiaVisYivYis Japovs
= Gui,iikii  Gaiikis + Gisiaikii + Gisiibii

so that d; = d» + 2ds , which leads to (6). ||2

From (2) we set up the basic differential equations. Differentiating (2) suc-
cessively with respect to aa , cxs , @ju , and summing over \, p we obtain (noting
that U = WZW')

' X
(8) Euijetr(AW +BWW'tcz) _ )\Zfz ]"g)\,, ,
W

and differentiating (8) successively with respect to aw , ¢ , @1, and summing,
we obtain

tr(AW + BWW' + C2) i\, Ju kv, lo
9) Eu;ijune = )Z f G wo -
WV O

Setting C = 0, A = 0, using Lemma 1 and (3), (8) and (9) become

2 The symbol || denotes end of proof.
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EuijetrB(U+V) = ¢ )\Zfi)\.jua)\“ = )‘Zfi)\,j)\
"

(10)
= afij,
Buijupe™® 0t = )\'Ea I idre + Cs(Brdue + rod)]
(11) = g; N R AN ¢ R L )
= cfiser + cs(fanin + Fires)-
If we define
(12) o(B) = Ee™", y(B) = R

then (10) and (11) can be written as
(13) e = cile¥)is,
(14) il = (V) ijpr + e[ (@) sins + (@) .zl

Equation (13) implies that
(15) ¢ = (e¥).

For B sufficiently close to zero, we can write

oY = €,
and using (15), we obtain for (14):
(16) eixiger F CXisxi = ca(Xijir + Xiixer)
+ cs(xint + xaxin + Xz + Xaxw)-

Fori =j =k = I, (16) reduces to
17) (e2 + 2¢5 — e1)xisii + (2 + 2¢5 — ¢1)xi: = 0,
the solution of which is
(18) x = —c log [s(B) + biit(B)],

where s(B) and #(B) do not depend on the element b;;, and ¢ is a function of
¢1, C2, C3, namely

(19) c= —(cc+ 2 — ¢1)/(ca + 25 — ci).
Write x = —c log H, then
xii = —cHy;/H,

(20) ,
Xijkl = CHinkl/H - CHij,kl/H,
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so that (16) can be written as
(e2 — e)[HiiHu — HHijpa) + c(er — i) HiHu

+ ¢[(1 + ¢)HuHjy — HHi, i + (1 + ¢)HuH » — HHq ju] = 0.
We now prove the following lemma.

Lemma 2. If (21) holds, then when B is symmelric,

(22) 2HH ;0 = ’g"" Ha| | Ha Ha

(21)

ik Hkl Hjl Hkl

Proor. Writing (21) for indices (7, j, k, 1), (4, k, 4, 1), and (3, I, j, k), we
obtain the matrix equation

-2 1 1 H,'ijz C2 — C; C3 C3 HHij,kl
d 1 -2 1 H.'ksz = C3 Ce — C C3 HH;'k,jl 3
1 1 —2/\H yH C3 C3 ¢z — ¢/ \HH 31 jx

where d = ¢3(1 + ¢). Inversion and simplification leads to the equation

H; Ha Hi;; Ha
Hj Hy Hj Hy,

(23) —csHH ij 3 =

b

cs = c3(1 + ¢)/(ce — ¢1 — ¢3).
Furthermore, from Lemma 1 and the definition of H, it follows that the third

derivatives of H with respect to (7, ) are 0. Therefore, for B symmetric,

H = X\ + pbii + vbj; + obi; + 7(bubj; — bi)),
where the Greek letters are functions of the elements of B except bii, bij, bjj .
Thus H;; = p + ‘rb,-j, Hjj =+ Tbii,

Hi; = %o — bij, Hijij = —3Hu i = —3r.
(Because of the assumption of symmetry, certain differentiations require the
insertion of a factor of 1.) Thus in (23) for H;,;; we obtain
Hy; Hy

—1-Hes =
21' 64 =
H; Hj

_ l B+ 7bi;  jo — by
T30 —7biy v+ i |
and equating of coefficients of bi; , b, , or b;; yields ¢s = —2. ||

We now use Lemma 2 as a basis for induction.
Lemma 3. If B is symmetric, then

(24) 2"V H" ' H,j, oo ini = Z p(a)p(B)Heaysy ++* Hapsy

where 2 is over all assignments of ©’s and j’s to o’s and §’s with the restriction that
for each pair (ix, ji) one index is an o and one a B, and where p(e) s the sign of
the permutation of the indices.

ReMARk. The above notation is not precise. However, we feel that the present
simpler terminology will be clearer to the reader than a more cumbersome
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precise form. Verification of the reduction of n = 2 will serve to clarify the
notation.

Proor. By Lemma 2, the result holds for n = 2, and we assume it holds for n.
Multiply (24) by 2, differentiate with respect to bs,,,j,,, , then multiply by H.
The LHS becomes

(25)  2""nl{(n — V)H" 'HeypyinpHiis e inin + H Hiygyoon ingaingal -

The RHS becomes, using (23),

Z’P(a)P(ﬁ) Z <H Ha;;ﬁk) 2Hahﬂh-i'n+1in+1 H= 2”’(“)9(3) Z (H H"kﬁk>
h=1 \ks%h h=1 \ks%h

: {2Hahﬂh Hi‘n+1in+1 - H«M'nﬂ Hﬂhin+1 - H"hjn-)-l Hﬁhi’n.n}-
By equations (25) and (26), and using the induction hypothesis, we obtain

n+1
2 n!H"H‘iljl,-“,in.).ljn-)-l

='p()p(B) {; <kH H akak)

2h

(26)

'[ZHahﬂh Hih+1in+1 - Hahin.u Hﬁh:in+1 - Hahin+1 Hﬁh"n+1]
- 2(n - 1) (JLII Hdkﬂk) Hin+ljn+l}

Z'p()p(B) {Z(kIjl Hakﬂk) Hi, ins

(27)

I

— 5 I Hoat e B + Hoa Hin) |

1
= m ZIP(a*)P(ﬁ*)HaIﬂ; e H“;+lﬂ;+1 ’

which is (24) for (n + 1), and completes the induction.

To see the last step, the evaluation can be made by examining two cases as
{arBr} = {tn41jnt1} for some h, or not. In the former (aBr) = (Tny1jns1) o
(jn+1'l:n+1). Define

ar=aiift <h,
o, = arpif t = b,
and B; similarly. Then p(a®)p(B*) = p(a)p(B) and
Hapy -+ Hopptyr = Haupy * Hepallin 150315

and there are 2(n + 1) such terms.
If af = %o41 and B = jura(h < m), define
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Bi=pBF for t<h,

B =Bty for t=ht=m—1,
B, =pr for t=m—1,

then p(a®)p(8*) = —p(a)p(8), and

Hagpt - Hapyipnyy = Hapy " HopospmsHoansn *** HawsH o _yiny 1 Hom_

a; = aF for t < h,

a; = a;‘ll fOI' t ; h,

141 *

By considering 4~ > m we obtain (n 4+ 1) such terms. From the other cases,
i.e., & = jut1, B = tny1for b < mand h > m, we obtain (n + 1) terms

H";ﬁ; tee H“;+1ﬂ:+l = Halﬂl ttt H“m-—zﬁm—zH"mﬁm cec H“nﬁnHam—lﬁH-lHﬂm—l.fn-q»l '”

4.Solution of the differential equation. From Lemma 3 we obtained a differential
equation in H. If we can prove that, for symmetric matrices B, H = |A — 2B|/|A|,
the proof will be complete, since our original characteristic functions ¢(B),
¥(B) defined in (12) are related to H by ¢ = H **, ¢y = H 0,

In the following we adopt the notation: if M = (m.;):p X p, then M =(m;):
1 £14,j =k and m® is a vector consisting of the elements not in M} arranged
in any order.

We now prove by induction that for symmetric matrices, B,

(28) H = 6,(6™)|Bx + D" (b)),

where 6;,(b®) is a scalar function of b*, and D*(b*) is a symmetric matrix
function of b®.

Before proving (28), we point out how this will give us the desired result.
Suppose (28) holds, then for ¥ = p, H(B) = «a|B + D|. Recall that x =
—c log H and H(0) = 1, so that « = |D|™ and H(B) = |B + D|/|D|. We
assert that D is real and is negative definite. To see this we can diagonalize D
with diagonal elements d; and choose B to be diagonal with diagonal elements
b; . Hence, from 6y = H °,

oy = [I1di/(b: + do)]"

But 8¢ < 1 when b; < 0, and hence d; < 0. Thus we can write D = —1A,
where A is positive definite, in which case H = |A — 2B|/|A|.

We now prove (28). Since H;i,;; = 0 from (22), (28) holds for £ = 1. From
the development of Lemma 2, we also have that

1| bis + (w/7) by — 3(a/7)

T bi; — 3(a/7)  bu + (v/7) ’

so that (28) holds for £ = 2. Assume that (28) holds for general n, i.e.,
(29) H = 6,(b')|B, + D"(b™)].

From the derivatives of order (n + 2) with respect to the elements of B,y
in (24), we see that H is a polynomial in the elements of B,; with the elements



THE WISHART DISTRIBUTION 1279

of b** as coefficients, i.e., H = Pp11(Bus1, b™*?). The terms of degree (n + 1)
in P,y are, by (24), a multiple of |B,4|, so that

(30) H = apa(b™) Bpsa| + -+
The coefficient of by - - - b,y in H is, by (29), 6,(6), and by (30),
an 1 (0™ )bns s + Bura (BY).
Consequently,
0n(0™) = onp2 (b )brsrnis + Bara(0").

The coefficient of bs; - -+ bas in H is, by (29),

bu + du(d™) b + d(d™)

b + de(d™)  bar + da(d™)

By (30), 6,(0")du1 , 6,(b™)das , and 6,(b™)dss are polynomials of degree <2
in byn41, b2,ng1, a0d (b1,n41b2,n41), respectively. Hence

Ql](bl n+1)
dy = Tkt
11 bn+l,n+l F ﬁ/a + vu

Q22 ( b, ,n+1 )
bn+l,n+l + ﬁ/ 24

Q12(bl,n+1 ) b2,n+1)
bn+1,n+1 + 18/01

where Qy. is linear in each variable separately. Thus Qu Q. — Qi = 0, so that
Qu = ki(binps + &) Q2 = ka(bynp1 + 8)7

Q12 = k3(biny1 + 61) (banys + 82).
By examining the coefficient of |B,,+ll in (30), we obtain k; = ky = k; = —1.
Set 0n+1(b(n+1)) = aq n+1 ”+l(b(n+1)) — ﬁ/a, n+l(b(n+l)) = i,
drii (™) = 5, 4,7 < n. This is as above with (s, /) = (1, 2). Then accord-
ing to the above definition, we have, with bny1 = (b1a4a, * 5 b)),
0i1 (0" *) |Bugs + D)
Bn + P (bn+l + 6),

bn+l + 0 bn+l,n+1 + B/a

B (b,,+1,n+1 + g)

6,(b") |B, + D"(™)| = H. ||

5. Appendix. We now consider the expression |I, — 2T|~”2 for fractional
n < p — 1, and show that it is not the moment generating function (m.g.f.)
of a d.f.

6,(6™)

do2 = + Yoz

d12 = + Y2,

=«

(bn+1 + 6),(bn+l + 6)

B, —
+ P bn+l,n+1 + ﬁ/a
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Let ¢ be the largest integer less than n. Now let X = (z;;) beap X (¢ + 1)
random matrix whose elements are independently distributed as follows: each
z;;is NO,1)if¢ > j,2;,=0if¢s < j,andz; =1, -+, ¢+ 1) has a xa—ina
distribution. Then X has a non-singular distribution, and if XX’ = Z, and the
right-hand (p — ¢ — 1) X (p — ¢ — 1) corner of T is equal to 0, then
I, — 2T|™"2 = E tr TZ is the moment generating function of Z, except for
the same right-hand corner. Furthermore, if W has m.g.f. |[I, — 27|72, then
W except for the lower right-hand corner can be decomposed uniquely into
XX’, where X is as above. Thus W = XX’ + U.But Eu;i =n — ¢ — 1 <0
for 7 > q + 1. Hence W is not positive semi-definite with positive probability.

Consequently, there is a matrix B, not positive semi-definite, every neighbor-
hood of which has positive probability. Let kn > p — 1, and let Wy, --- , W
be independent random matrices with m.g.f. |[I, — 2T|=/2. There is a neigh-
borhood N of B such thatif C; e N,z = 1, -« - , k, C;is not positive semi-definite.
Therefore I W is not positive semi-definite with positive probability, and hence
is not Wishart.
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