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1. Introduction. The random variables discussed in this paper take their
values in a compact commutative topological group with a countable basis,
e.g., the reals (mod 1). The major result is Theorem 4.1, a characterization of
the uniform distribution on such a space. It is the similarity of this character-
ization to that of Skitovic [4] of the normal distribution on the real line which
makes it of special interest. The uniform distribution on the spaces considered
here seem to play the same central role that the normal distribution does on
Euclidean spaces. For example, Theorem 2.3 is a central limit theorem for such
space.

Many of the results stated without proof may be found in a 1940 paper by
Kawada and Ito [1], which considers the case in which the group operation is
non-commutative. The results presented in Sections 2 and 3 are easily obtained,
some are well known, and proofs are sometimes omitted. A major purpose of
these sections is to fully acquaint the reader with the background necessary to
Section 4. Section 5 contains counterexamples which show the necessity of
some of the hypotheses of the characterization.

2. Some preliminaries. Let I' be a compact commutative topological group
with a countable basis, the group operation being addition with the symbol @.
Let T' be the character group of T'; T is also a topological group. The compact-
ness of I' implies the discreteness of I'. Denote the value of a character & at a
point z € T by (z, £). Let the identities of I and I' be e and & respectively. The
character group of the cartesian product of groups such as TI' is the cartesian
product of the corresponding character groups. The ¢— field for each space T
will always be the class of Borel sets. Examples of I' and the corresponding I’
are:

(1) I, the reals (mod 1), and I, the multiplicative group of all functions
exp 2winz), xel, n = 0, £1, --- .

(2) The product spaces I™, I and I, .

(3) Ay, the integers (mod k) and A, the functions exp @witx/k), t =
0,.--,n— 1. .

(4) Q, the n-adic integers and @ the functions exp (2mim Y wcs an’/ms),
m and h positive integers, ao, a1, + -+ £ Q.

Let (@, S, P) be a probability space, let £ be a random variable defined on
Q and taking values in T' and let u = P£ " be the distribution of £ in T. If x is a
Haar measure on T, then u is called the uniform distribution and £ is said to be
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uniformly distributed (U.D.) in I'. A random variable ¢ with distribution u on
T is uniquely determined by its characteristic function

a(®) = B(&8) = [ (5,8) da,

the Fourier transform of x, defined on T'. A sequence of distributions u , e, - - -
converges to a distribution u on T if and only if the corresponding sequences of
Fourier transforms converges to the Fourier transform of u. £ is U.D. on T' if
and only if ¢(£) = O for all £ # 4. This fact makes it easy to find many inter-
esting results. For example, from [1],

TaEOREM 2.1. Let & and & be independent random variables in T. If & s U.D.
in T then & + & s also. Moreover, & and & + & are independent.

A random variable £ in T satisfying P (¢ e C) = 1 for some coset C of a proper
subgroup of T will be said to have property S. Theorems 2.2 and 2.3 are simple
consequences of Lemmas 2.4 and 2.5. Theorem 2.3 might be called the central
limit theorem for compact topological groups.

TuroreM 2.2. Let & and & be independent random variables taking values in
T and suppose & does not have property S. Then if & and & + & are independent,
&£ UD. i T

TuroreMm 2.3. Let &, &, - - - be identically and independently dustributed, none
having property S. Then n, = D e &5, for n — o, is asymptotically U.D.

Lemma 2.4 ([3], pp. 126, 137). Let Ty be a subgroup of T and let T be a subgroup
on T consisting of all elements £ & T with (x, £) = 1 for all x € Ty . Then the factor
group Ty = T/Ty is the character group of Ty and T is the character group of the
factor group Ty = T/Ty. Ty = T if and only if T2 = {8}.

Lemma 2.5. | ¢:(2)| = 1 for some £ e T, £ 5 &, if and only if & has property S.

Proor: Suppose ¢; (£,) = ¢** for £ # & and some real number «. Then from
| (2, #)| = 1, the complex variable (£ %) must equal ¢** with probability one;
thus for ¢ = {z: (z, £) = €'}, we have u(C) = 1. Let B = {x: (z, £,) = 1};
since £, ¥ &, B is a proper subgroup of I'. Further, for z; , z. € C, we have

(@1 — 22, 80) = @1, %) (@2,%) = 15

thus C is a coset of B.

Vice versa, let B be a proper subgroup of I' and let #; + B = C denote a
coset of B such that P{feC} = 1. Now Lemma 2.4 implies that there exists
an # such that (z, #,) = 1 for x ¢ B, thus (z, &) = (21, £1) for x £ C; hence
E{&, &) = (z, 4) = €' for some real a.

3. The uniform distribution under a homomorphism. Theorem 3.1 will prove
valuable to the consideration of the problem of when certain functions of U.D.
random variables are also U.D. Let T and G be two separable locally compact
commutative topological groups and let T' be compact. Then a homomorphic
image K of T into G is necessarily a compact topological group (in its relative

topology) .
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TueorEM 3.1. Let T be a homomorphism of T into G and let u be the uniform
distribution on T. Then the distribution u* = uT™ induced by T on K = TT s
also uniform (u* is o Haar measure on K).

Proor: For y = T'(z) ¢ K and a Borel set F of G,

wITF +y) = w(THF) 4+ 2) = wT7(F).

CoroLLARY 3.2: Suppose that &, -+, £, are independent U.D. (I.U.D.)
random variables in T. Let n; = p 1y aiigi(i = 1, .-+, m), where the a;; are
tntegers. Then the random variable n = (g, -+, 1m) 38 U.D. in some compact
subgroup of the m-fold product T X --- X T = T'™,

In short, the homomorphic image of a U.D. random variable is also U.D. on
some space K. The only problem left will be to find this image space K. The
following is a simple consequence of Corollary 3.2 and Lemma 2.4 and uses
the same notation as Corollary 3.2.

THEOREM 3.3. n1, -+ , 1, are I.U.D. 5f and only if for ;e T (G = 1, .-+, m),

IT7a % = éforj =1, -, n implies that £; = &, i = 1, .-, m(%

Proor: By Corollary 3.2, n = (m, -+, 7.) is U.D. on a subgroup I of
™. Hence we need only prove that I'; = I'™ if and only if (¥) holds. Let
Ty be a subgroup of T'™ consisting of all £ such that (®, ) = 1forallzeT;.
By Lemma 2.4 Iy= T if and only if I, contains only the element 8™ =
(@ ---,8.Forz = (y1, -, ym) eTawehavey; =D jyagz;fori =1, ---,
m with z;eT, (j = 1,---, m). Then for (%, -+, #.) ¢ Iy the following
statements are equivalent:

) ITrm (i ais, £) = IT5 @y, I 839) = 1

@) II74% = eforj=1,---,n.

This proves the theorem.

A compact topological group is connected if and only if its character group
has no elements of finite order. The spaces I, I'® and I are each connected.
From Theorem 3.3, using the same notation, we have

CoroLLARY 3.4. Suppose that T is connected. Then ny, +«+ , nm are LUD. ¢f
and only if A = (a;;) has rank m.

Proor. Suppose A has rank » = m and that for certain £; e T, ] [1=, 477 = ¢
forj = 1, .-+, n. Now, for fixed ¢ = 4, there exist integers hi, - - - , h, and a
constant C;, % 0 such that) j—; a;h; = C, for ¢ = 4, and is zero otherwise.
Then

n m \ hj
e=1I (H ﬁ) AN
j=1 \7=1
Hence, since T has no elements of finite order, £;, = éfor 4 = 1, -+, m. It
follows from Theorem 3.3 that #;, -+, 7, are L.UD. in T.
Now suppose A has rank r» < m. Then there exist integers k;, -+ , kyn , not
all zero with> 7, k,a;; = O forj = 1, --- , n. Then for arbitrary fixed £ = ¢,
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let #; = &%,¢ =1, -+, n. Then #; 5 & for at least one 7. Further,
n %k,;a,;j
I #% = #=* = éforallj.
=1

Hence, from Theorem 3.3, 71, - - - , 7, are not L.U.D.

The following theorem follows by similar arguments.

TuEOREM 3.5. Suppose that T' is a cyclic group (e.g. T is esther I or A). Then
£, , & are LUD. ¢n T if and only if > iy t;€; 18 U.D. for every set of integers
i, -, tosuchthat #eT, 4" =& (j =1,---,n) implies £ = ¢&.

COROLLARY 3.6. &, -+, £, are LUD. in T = I if and only if ) j—1 ti&; is
U.D. in I for each set of integers t,, - -+ , tn not all zero.

COROLLARY 3.7. &1, -+ , & are LUD. tn T = Ay of and only if D -1 tiE; 1s
U.D. in Ay, for each set of integers ty, -« , ta with g.cd. (t1, -+, ta, k) = 1.

Proor: Let % be a generator of Az, let d be an arbitrary integer, 0 < d < k,
let ¢, -+, t, be integers, and let A = g.cd. (4, -+, &, k). By Theorem 3.5
we must show that the following are equivalent:

(1) @)% =44j=1,---,nimpliesd = 0.

2 A=1.

We may also write

(1) dt; = 0(mod k) for all j impliesd = 0. If A = 1 thend\ = d = 0(mod k)
implies d = 0, a conclusion stronger than (1). If N # 1, let d = k/x and (1)
does not hold.

4. A characterization of the uniform distribution. Let &, -+ , £ be I.U.D.
random. variables in the connected compact group T. Let A = (ai;) be an
n X 7 non-singular matrix of integers and define 5; = drsaigifori =1,
n. Then, from Corollary 3.4, %1, ---, 7, are LU.D. if and only if 4 is non-
singular. This property of U.D. random variables is an interesting one, and it
would be of further interest to discover the degree to which it characterizes
the uniform distribution. Theorem 4.1 partially answers this question, and is
the major result of this section. In this connection it may be interesting to men-
tion the following related result due to Skitovic [4]: if & , - - - , & are independent
real random variables and a; , b; are real constants such that 7 = >t e and
ns = 211 b;t; are independent, then each £; with a;b; ¥ 0 is normally distrib-
uted. It was this result which suggested the results of this section and the next.

TuEOREM 4.1. Let T be connected and let & , - - - , & be n independent random
variables in T, such that for no j does &; take (with o probability one) all its values
in a fixed coset of a proper (compact) subgroup of T'. Let

n
M = .Zlaijgjsi:l)”'yn)
J=

where A = (a;;) 18 an n X n matrix of integers such that for each ¢ at least two
ai; are non-zero, and A = det A = 1. Then, if m, -+, 1. are independent, we
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have for each j that £; s U.D. in T as soon as its distribution u; has an absolutely
continuous component with respect to the Haar measure v on T.

In proving Theorem 4.1 we need the following theorem, which is a consequence
of a general theorem of homomorphism of a normed algebra given by Loomis
[2] and is a generalization of the ordinary Riemann-Lebesgue theorem for the
real line. We need this theorem only for the case that G is compact. The theorem
can be proved for this case by showing first that each complex-valued function
on T integrable with respect to u can be e approximated in the mean by a linear
combination of characters. This approximation can then be applied to the Radon-
Nikodyn derivative of the absolutely continuous part of u with respect to the
Haar measure.

TarorEM 4.2. Let u be a distribution on a separable commutative locally compact
topological group having an absolutely continuous component with respect to the
Haar measure v on Q. Let &1, &, - - - be a sequence of characters of G such that,
for n — o, 2, is eventually outside every compact set in G (every finite set if G is
compact, thus G is discrete). Then

=b <L

lim supn-w j; (2, £,) du
Moreover, if p << v, then b = 0.

Proor or THEOREM 4.1: Let £, be an arbitrary fixed non-trivial character of
T. Let ¢;(t) = E{(t&;, £0)} for integer ¢. Let (41, --- , t.) be a set of n integers.
Then by the independence of 5, -+« , 7, and &, - - -, & we have

Q) Il ¢ (i aity) = T ITi os(auits).

We may assume without loss of generality that A = 1, for otherwise we may
replace 7, by — . , thus changing the sign of A. Let A;; denote the cofactor of
the element a;; in the matrix (a;;) andlet ¢ = Ayt (k, 4 = 1, -+, n), where
¢ is an integer. Then

2; aiit? = 2; @At = 8.

Applying (1) for t; = ¢, we obtain

@) ¢ (®) =11 I o5 (ashat), (since ¢;(0) = 1 forj = 1,---, n).

Tor all j and integers i, | ¢;(¢)| = 1; so we have

(3) | (®)] <TI0~ | o (@nAut)| for all integers ¢ and & = 1, ---, n. Let
k be a fixed integer, 1 =< k =< n and assume that & is not U.D., i.e., there exists
a character £; # & such that E{ (&, £,)} # 0. Since &, was an arbitrary non-
trivial character, we may choose £, = #;, hence ¢, (1) = E{ (&, £1)} &= O.

We assert that at least two among the integers azAs(Z = 1, ---, n) are
non-zero. Suppose this is not so. We have Y .i—; azxAs = A = 1, so exactly one
axAg 1S non-zero, say G rls: then @A = 1 and axAyz = 0 for ¢ # 4.
Hence, from (2), applied for ¢ = 1,

@ Ilie [T | 6s(aina)| = 1.

From Lemma 2.5 and the fact that no &; is entirely restricted to a coset of a
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proper subgroup of T, |¢;(t)| < 1 for all j and ¢ # 0, so that (4) holds only
when a;;As = 0 (5 # k,2 =1, ---, n). From A;; 5 0 it follows that a,; = 0
for j # k, which violates the assumption that a.,; # 0 for at least two j.

Hence we may assume that azAy 5 0for ¢ = 4 and ¢ = 42(¢; ¥ %2). We have
from (3)

(5) | e @) = | dr(@inliyit) o (@iguAigilt) |
Putting @ = supi,s,... |¢x ()|, we have @ < 1. By ¢(1) = 0 we have ¢ > 0.
For every e > 0 there exists a non-zero integer ¢ such that | ¢ (t)| = a(1 — ).
Then from (5), a(1 — ¢) =< o’ for each ¢ > 0, implying that a = 1. Because
|#u(n)] < 1 for all n 5 0, it follows that

1 = Qq = liInSupn»wlqsk(n)I .

Now, since T is connected, I' has no elements of finite order. Thus, since T' is
discrete, 47 is, forn = 1, 2, - - - , eventually outside each compact set of T'.

Now, assume (besides the condition that & is not U.D.) that the distribution
of & has an absolutely continuous component with respect to the Haar measure
on T. Then, by Theorem 4.2, lim sup.»« | ¢x(n)| < 1, a contradiction. This
proves the theorem.

6. Counterexamples. In this section we will justify some of the many condi-
tions of Theorem 4.1 with some counterexamples.

ExampLE 5.1: The necessity of the condition of Theorem 4.1 that A = 41 is
demonstrated by the following counterexample: to any integer matrix (a;)
with | A| = | det (@i;)| = 2 one can associate independent random variables
&, , & in T' = I, each having an absolutely continuous distribution (with
respect to the Haar measure), such that the n; = > r1aié; G = 1, -+, n)
are independent while nevertheless not each £; is U.D. Let m (1 < m =< n) be

such that A does not divide g.c.d. (Aim, *+*, Awm) = d. In order to show that
such an m exists suppose A divides each A,; . Then A™ divides

det (Ay;) = [det (a:i)]"™ = A",

which is impossible for | A | = 2. It follows from A = D 7—; GimAim , that A = pd
for some integer p, | p| = 2.

Let &, - - -, & be independent random variables in I. Assume that &, , j # m,
is U.D. in I and that p£,, is U.D. in such a way that £, is not U.D. (e.g., &, is
U.D. in [0, 1/p]). It will be shown that %, -, 7, are independent, in fact
I.U.D. (while &, is not U.D., though its distribution has an absolutely con-
tinuous component). .

Let &y, - - -, t, be integers, not all zero. In view of Corollary 3.6 it suffices to
show that Y e tm: is U.D. in I. Now

1; tins = ; gi£; with ¢; = ; @iti .

> i, tins is, by Corollary 3.6, certainly U.D. when some ¢; (j 5 m) differs from
zero. Otherwise, from Cramér’s rule, t; = (1/A) (Aimg@m), % =1, - - - , m. Therefore,
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A = pd is a divisor of A;ugm 2 = 1, -+, ») and hence of dq., , showing that p
divides ¢,, . Thus, also in this case, Y i1 tin; = @mém is U.D. in I.

ExampLe 5.2: The following result clearly demonstrates the necessity of the
hypothesis of Theorem 4.1 that for fixed ¢ at least two a;; are non-zero.

Assume A = I,let &, -+ - , & be independent in I, and let &, - - - , & be U.D.
in I. The distribution of & is arbitrary. Let n = &, 7 = D 1 ask; G = 1,
.-+, n), where (a;;) is any non-singular integer matrix, a; = -+ = a5, = 0,
an = 1. Assertion: #;, - -+, 7, are independent.

For, let (b1, -+, ha) be a set of n integers. Then

Zlhi"h’ = <h1+ ;anhi) &+ 22 (Zz aijhz') & -
1= 1= J= i=
From Theorem 4.1 and Corollary 3.4, this sum is U.D. on I unless h; = O,

1 = 2, (for the matrix (a;;;¢, 5 = 2, ---, n) is non-singular). Hence, in all
cases,

E{exp (21r (=1)} ?::1 hi m)} = InI Efexp (27v/ =1 hins))}

=1
= Efexp 2r(—1)"m)} when by = hg = -+ = by = 0, = 0 otherwise.
Thus, since their joint characteristic function factors, #7;, -+, #. are inde-
pendent.

ExamprE 5.3: If | A| = 2, it may happen that there exist positive numbers
a1, -+, o such that

6) Dt a iiyio; = 0 whenever 4, 5 1, .
Let &, &, -+, £ be independent real normally distributed random variables
such that #; hasa variance o7 and mean zero. Thenn; = Y ;o a:; (G =1, -+ n)
are jointly normally distributed. Further (6) implies that E (.9;) = 0 for ¢ # j;
hence, the 5, are independent. On the other hand, a normally distributed random
variable £; is absolutely continuous (mod 1), but never uniformly distributed
(mod 1), in view of

Efexp (2#(—1)%7”&)} = et o

It may be interesting to prove that (6) implies | A| = 2. More precisely,
let A = (a:;;) be an n X n real matrix with A = det A ¢ 0. Let k, m, r be
fixed, axm # 0, @i = 0, 0y 5= 0, 0 # 0. Then (6) implies 0 < | aembBim | < | A,
hence | A| = 2 if the a,; are all integers. Moreover, if all the a;; are integers,
for each ¢ we have a;; # 0 for at least two j, and all ¢; # 0, then (6) implies
| A| 2 1 + Maxy,m | Gm | . To prove this note that

n n
2 2
GmOmD = 3 Qijos D, Aimli
j=1 =1
2
20 Aim D, QisOk;07
J J

2 2
Akmz axj0j .«
J
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Now, if Grm 5 0, @iy 7 0,0 % 0,0, = 0, A 5= 0, then Ay = 0, ;05,07 > Gpmoo ;
hence

lakaUfnlAl > ’Akmlalzcmo-fny
and | A| > | Agm@nm | > 0, proving the assertion.
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