ENTROPY AND CONJUGACY
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0. Introduction. The notion of using entropy, a concept from information
theory, to define a conjugacy invariant for measure-preserving transformations
is due to Kolmogorov [2], [3]; it has been exploited by Sinai [5] and Rokhlin [4].
Halmos [1] has given a good treatment in English, in which he develops the
entropy from its information theoretic origins. It is possible, however, to develop
the theory of entropy as a conjugacy invariant of measure-preserving transforma-
tion in an elementary way without even mentioning information theory, and
also without invoking powerful theorems such as McMillan’s theorem or the
martingale theorem of Doob, and that is what we shall do in the present paper.

1. Partitions. Let X be a measure space with measure m such that m(X) = 1.
We define a partition @ to be a finite family of disjoint measurable sets which
cover X. If every set in a partition @ is the union of sets in another partition ®,
then we call ® a refinement of @, and write @ C ®. The least common refine-
ment of @ and ® isdenotedby @ v ®.Clearly, @ v 8 = {AN B|Ae@, Be®}.
If S is a measure-preserving transformation on X, then if we define S@ = {SA |
Aea}, it follows that S (@ v ®) = S @ v §'®.

We say that @ and ® are independent if, for every A ¢ @, B ¢ ®, m(ANB) =
m(A)m (B).

2. The function L. Consider the continuous real-valued function L defined as
follows:

L) = —tlogt 0<t=s1
= 0 t = 0.

The only properties of the function L that we shall use in most of the subse-
quent discussion are the following:

(a) The function L is continuous at zero, and L(0) = 0.

(b) The function L is concave in the sense that, if a, b, and ¢ + b are in the
domain of L, then L(a) + L() = L(a + b).

Note that this is not quite the same thing as being concave downward in the
sense of elementary calculus. However, a function (such as L) which has value
zero at zero and negative second derivative throughout the unit interval (and
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thus is concave downward in the sense of elementary calculus) will be concave
in our sense.

(¢) The function L is additive in the sense that, if {a; |7 = 1,2, - - , n} and
{bilj = 1,2, .-+, m} are two sets of nonnegative real numbers such that
2@ = land 2% b; = 1, then >0, L(as) + D L(by) = 30,

71 L(ad;). To prove that L has this property, one has merely to write out
the right-hand sum, and use the fact that log (ab) = log a + log b.

3. Entropy of a partition. Given any real-valued function f defined on the
interval [0, 1], we can define the mean entropy with respect to fof a partition @ as
follows: H; (@) = X 4eaf(m(4)).

In case f = L, we call this simply the mean entropy of @, and write I (@) =
H.(@). Many of the results which follow are true for the mean entropy with
respect to any concave f or with respect to any additive f. We shall indicate
these results with a “con” or an “add” as the case may be.

Lemma 1. (“con”): @ C ® implies H(Q) < H(®).

Proor. Each 4 in @ is the union of elements of ®. Say 4; = U?; B, ;. Thus
m(4;) = D iy m(B;,), and so by concavity it follows that L(m(4,)) =<
2 i1 L(m(B;,:)). Thus

a(a) = le L(m(4;)) = ;1 ; L(m(B;.)) = H(®).

Lemma 2. (“add”): If @ and ® are independent, then H(Gv®) = H(R) +
H(®).

Proor. Simply look at the definitions and apply the additive property of L.

Lemuma 3. If T is a measure-preserving transformation on X, and is a partition,
then T @ 3s also a partition, and H (T™@) = H(a).

Proor. For any 4 in @, m(T'A) = m(4) and the result follows.

4. Entropy of a transformation with respect to a partition. Let 7 be a measure-
preserving transformation on X, and define the entropy h(@, T) of T (with
respect to the partition @) by the equation

n—1
(@, T) = lim sup %L H< \Vi T"d).

n->00 =0

We could also define the entropy with respect to f h; (@, T') by the equation

n—1
hy(@, T) = lim sup % H,(\/ T"&).
n->00 7=0
Obviously, A (@, T) = h.(@, T) by definition.
Lumma 4. If S is a measure-preserving transformation which commutes with T,
then h(S7'@, T) = h(@, T).
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Proor.

n—1
n(S7'@, T) = lim sup %H( \V/ T"’]S"’&)

n->0 =0

1 /n—1
= lim sup = - (\/ St >

n->c0 =0

n—1
= lim sup = 1 a <S'1 \VAVil i@)
=0

n->0

n—1
= lim sup — H( T > = h(@, T).
n->0 =0

Lemma 5. (“con”): If @ C ®, then h(@ T) h(®, T).

Proor. If @ C ®, then clearly VLT @ c Vi, T° ®, and thus by
Lemma 1 the result follows.

LemMA 6. (“con”): If @ C iy T~ ® for some N, and T is invertible, then
h(a, T) = h(®, T).

Proor. Clearly, VL T ¢ V%" T7°®, and it follows by Lemma 1 that
AV T7%°e) = H(VEL T7'®). Thus

n—1
n@, T) = lim sup = H(\/ Tt )

n->0 7=0

n—1

= lim sup +2NH(\/ d )
2N+n—1 -

<l —— _H —

- hnr}_iup n + 2N H( ¢\=/o T (B>
=hWT"®, T) = h(®, T).

LemmMA 7. (“con”): If k is a positive integer, then h (@, ™ = kh(@, T).

Proor. Let & = /52§ T7°@. Clearly, @ C ®, so

n—1
@, T") £ W(®, T*) = lim sup H (\/ (Tk)_i(B)

n->0 =0

n—1 —
= lim sup - H<\/ pH (\/ T ))

1 nk—1 X
= lim sup - H ( V T“’Ct)

n->0 =0

1 nk—1 X
= k lim sup o ( V T“’Ct)
n->0 =0

< kh(@, T).

The last inequality follows from the fact that the superior limit of a subse-
quence is always less than or equal to the superior limit of the sequence.



ENTROPY AND CONJUGACY 229

Lemma 8. (“con”) : If T is an invertible measure-preserving transformation, then
(@, T*) < |k| h(@, T) for all integers k.

Proor. We have already proved the result for positive k. If & = 0, it is natural
and usual to take T° = I, the identity transformation.

n—1

Thus H( \V I°@) = H (), so (@, I) = lim Sup%}__f(@) —0.TEk = —1,
=0 n->00
note that

n—1 n—1 n—1
a (\/ T’”’a): H <T"—‘ \V; T‘“‘a) =H < Vi T“"a);
7=0 7=0 =0

thus h(@, T = h(@, T), and the desired result follows.

6. Relative entropy. A o-field (or simply field) is a collection of measurable
sets closed under complementation and countable unions. A minimal set in a
field is a set which contains no other set in the field except the empty set ¢.
The collection of all minimal sets of a finite field is clearly a partition. Con-
versely, the collection of unions of sets from a given partition (together with
the set ¢) form a finite field. Thus there is a natural one to one correspondence
between the set of all finite fields over X and the set of all partitions of X.

Given a measurable set A and a field @, let P(A/®) denote the essentially
unique function on X which is measurable with respect to ®, and such that
[sP(A/®) = m(AN B) for all B ¢ ®.

Thus if B = {X, ¢}, P(4/®) is the constant m(A). If ® is finite, then let
® denote the corresponding partition, and we have

P(4/®) = s [m(AN B)/m(B)]x(B)

where x (B) is the characteristic function of B. Note that if A is a set in the
field ®, then P(4/®) = x(A). Now we define the mean entropy of a partition
@ with respect to o field ® as follows:

H(e/o) = % fx L(P(4/®))

If ® = (X, ¢), we simply write this as H (@). Clearly this definition agrees
with the one given in Section 3. Since x(4) = 0 or 1 at each point in X, and
since L(0) = L(1) = 0, it follows that if every set in @ is in the field ®, then
H(a/®) = 0. The following computation, which depends strongly on the special
nature of the function I, is self-explanatory:

A v ®) = D swsae Lim(AN B)) -
= EAea,Be(B’L(m(An B)) — ZBeos' L(m(B)) + ZBsos' L (m(B)
= — 2 uca,ne m(AN B)[log (m(AN B)) — log (m(B))] + H(®")
= 2w L(m(A N B)/m(B))m(B) + H(®)
= H(e/®) + H@®).
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The equation H(@ v ®) = H(@/®) + H(®) implies (by an argument
similar to that used in Lemma 6) that for any integer k, h (@, T) < h(&®', T) +
He/VELT'®).

Now we come to the sticky question. Let € = VVZ_, T°®, and € =
Vi, T'®, (ie., the o-field generated by all the T°®). Suppose every element
of @ is in the field €. Then we know that H(&@/€) = 0. Does it follow that by
choosing k large, we can make H (@/€;) as small as we please? We could invoke
the deep and powerful martingale theorem of Doob at this point, but in fact it
is not necessary to do so: we shall prove the result we need directly. Let 4 be
some element of @ such that m(4) = 0. Since the union of all the €; is dense
in e, for any small ¢ > 0 we can find a set C in @, such that m((4 U C) —
(AN C)) < emin {m(4), m(C), 1 — m(C)}.

Let ' denote the complement of C. Then

1—[mAN C)/m(C)] < €
and
m(AN C")/m(C)] < e

and therefore

m(A N B)
LL(P(A/ek)) = B;,’c - m(A n B) IOg_m(—B)._

m(4 N C)
m(C)

m(ANC)

< —m(ANC)log “m(C)

—m(ANC)log

< —eloge.

Repeating the process for each 4 ¢ @, and taking k sufficiently large, we can
make H(@/€;) as small as we please. Thus we obtain the following lemma.

Lemma 9. (proved only for entropy defined with L): If @ C Vi, T'®, then
he,T) = h(®, T).

6. Entropy of a transformation. We define the entropy h of a measure-preserv-
ing transformation T by h(T) = sup h(@, T) where the supremum is taken
over all partitions of X. Two measure-preserving transformations S and T are
said to be conjugate if there exists an invertible measure-preserving transforma-
tion R such that 8 = RTR™. It is easy to see that, for any partition @,

h(@, RTR™) = h(R@, T).

It follows that A (RTR™) = h(T); thus we say that the entropy & of a trans-
formation is a conjugacy invariant.

Lemma 10. (proved only for entropy defined with L) : If T is ¢nvertible, and
@ has the property that for every partition ®, ® C \/i2, T°Q, then h(@, T) =
m(T).

Proor. Corollary to Lemma 9.

LemMma 11. (“con”): If k is a positive integer, then R(T") = kh(T).
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Proor. Refer to the proof of Lemma 7. We have

nk—1
R(®, T*) = klim sup h}EH ( \V T“’@) < kh(e, T).
n->0 =0

Actually we may replace the inequality sign by equality, since H (\/2%" T7°@®)
is a monotone increasing sequence, and thus, if n is large,

(A/nk — HANZT T Q).

So we know that h(®, T*) = kh(@, T), and thus h(T") = kh(T). On the other
hand, by Lemma 7, h(@, T*) < kh(@, T), so h(T*) < kh(T). Thus h(T") =
kh (T).

7. An application. Consider the set Y of all sequences {a;} (where ¢ ranges
over all integers, positive and negative) of integers mod k. We call a subset of
Y a cylinder if it consists of all sequences which have specified entries at certain
components. For example, the set of all sequences such that ay = 1 and a; = 0
is a cylinder. Assign the quantity 1/k™ to each cylinder which involves the
specification of m components (thus the cylinder specified above is assigned
1/k%), and extend this function in the obvious way to the field generated by the
collection of all cylinders. Thus we have converted ¥ into a measure space.
Let T be the transformation which carries each sequence {a,} into the sequence
whose ¢th component is @, ;. The transformation T is clearly an invertible
measure-preserving transformation. It is called the k-shift. Since the set ¥ can
be considered as the set of points in the unit square by letting {a;} correspond
to the point (.awmas -+, .0_1050_3 --+), where the coordinates are in k-ary
fractions, it follows that all the k-shifts can be thought of as invertible measure-
preserving transformations of the unit square.

For a long time it was an unsolved problem whether or not the various k-
shifts are conjugate to each other. The entropy invariant solved this problem.
Forlet T be the k-shift. Let @ be the partition of ¥ into k equal subsets according
to the quantity in the zero component. Then any other partition @ will be con-
tained in /{2, T°@. Thus by Lemma 10, #(T) = h(®, T). The partitions
@, T'@, --+, T""@ are all independent, and thus

=0

b4 (\/ T”G) = if%H(T“’@) = nil(@)
= ni _llogl = ——nlogl = n log k.
= kCk k
It follows that

h(T) = lim sup 1

n->c0 n

- nlog k = log k.

So every different k-shift is in a different conjugacy class!
In fact, if T is a k;-shift and S is a ke-shift, with k; and % relatively prime, it
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is easy to show that no power of T can be conjugate to a power of S. For if
T™ were conjugate to S”, it would follow that m log k; = n log k» , which implies
kT = k3 . Thus no power of the two-shift is conjugate to a power of the three-
shift.
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