ON TESTING A SET OF CORRELATION COEFFICIENTS FOR EQUALITY

BY D. N. LAWLEY

University of Edinburgh

- **0.** Summary. The problem of testing a set of correlation coefficients for equality is discussed. We first generalize a result of Anderson and then provide a criterion of large-sample χ^2 type.
- 1. The generalization of a result of Anderson. In his preceding paper Anderson [1] has discussed (see Section 5 and Appendix A) the hypothesis that the p-1 smallest latent roots of a correlation matrix of order p are all equal to some unknown value λ , which is equivalent to the hypothesis that the variates are equally correlated with correlation coefficient ρ , where $\lambda = 1 \rho$. The set of p variates is assumed to follow a multivariate normal distribution.

Let r_{ij} $(i, j = 1, 2, \dots, p)$ be the sample correlation coefficient between the *i*th and *j*th variates found from a random sample of size n + 1. Then, adopting Anderson's procedure, we put $y_{ij} = (r_{ij} - \rho)n^{\frac{1}{2}}$ $(i \neq j)$. Taking i < j, we have a set of $\frac{1}{2}p(p-1)$ variates which are asymptotically normally distributed such that

$$E(y_{ij}^2) = \lambda^2 (1+
ho)^2,$$

$$E(y_{ij}y_{ik}) = \frac{1}{2}\lambda^2 \rho (2+3
ho) \qquad (j \neq k),$$

$$E(y_{ij}y_{hk}) = 2\lambda^2 \rho^2 \qquad \text{(no subscripts equal)}.$$

The results obtained by Anderson show that Bartlett's criterion [2] for testing the hypothesis is asymptotically equal to

$$(1.1) \quad (1/2\lambda^2) \{ \sum y_{ij}^2 - (2/p) \sum y_{ij} y_{ik} + [(p-2)/p^2(p-1)] (\sum y_{ij})^2 \},$$

where the summations are over all pairs of unequal suffices.

For the case where p=3 Anderson has proved that the above expression is distributed asymptotically as $(1-\lambda^2/3)\chi_2^2$, where χ_r^2 denotes a χ^2 variate with r degrees of freedom. A knowledge of this result gave me the idea of generalizing it for any value of p.

In the ensuing algebra it will be convenient to write

$$egin{aligned} Y_k &= \sum_{m{i}} y_{ik}\,, & ar{y}_k &= Y_k/(p-1), \ & Y &= \sum_{m{i} < j} y_{ij}\,, & ar{y} &= 2Y/\{p(p-1)\}, \ & y_{(m{i}m{j})} &= y_{m{i}m{j}} - [(p-1)/(p-2)](ar{y}_i + ar{y}_j) + [p/(p-2)]ar{y}. \end{aligned}$$

Received June 26, 1961; revised April 26, 1962.

It is easy to show that

$$\sum_{i \neq j} y_{(ij)}^2 = \sum_{i \neq j} (y_{ij} - \bar{y})^2 - [2(p-1)^2/(p-2)] \sum_k (\bar{y}_k - \bar{y})^2.$$

Hence expression (1.1) may be put in the form

(1.2)
$$(1/2\lambda^{2}) \left\{ \sum_{i \neq j} (y_{ij} - \bar{y})^{2} - [2(p-1)^{2}/p] \sum_{k} (\bar{y}_{k} - \bar{y})^{2} \right\}$$

$$= (1/\lambda^{2}) \left\{ \sum_{i \leq j} y_{(ij)}^{2} + [2(p-1)^{2}/p(p-2)] \sum_{k} (\bar{y}_{k} - \bar{y})^{2} \right\}.$$

We now construct new variates x_{ij} $(i \neq j)$ given by

$$\lambda x_{ij} = \alpha y_{ij} + \beta (Y_i + Y_j) + \gamma Y_i$$

where α (positive), β and γ are chosen such that the x_{ij} (for i < j) are uncorrelated and such that each has unit variance. Define X_k , \bar{x}_k , X, \bar{x} and $x_{(ij)}$ in the same way as Y_k , \bar{y}_k , etc. A simple method of determining the values of α , β and γ is obtained by noting that (for p > 3)

$$\lambda(x_{12} + x_{34} - x_{13} - x_{24}) = \alpha(y_{12} + y_{34} - y_{13} - y_{24}),$$

$$\lambda(X_1 - X_2) = \{\alpha + (p - 2)\beta\}(Y_1 - Y_2),$$

$$\lambda X = \{\alpha + 2(p - 1)\beta + \frac{1}{2}p(p - 1)\gamma\}Y.$$

By equating in each of these relations the variances of the two sides we find that $\alpha = 1$, $\{1 + (p-2)\beta\}^2 = 2/\{p - (p-2)\lambda^2\}$,

$$1 + 2(p-1)\beta + \frac{1}{2}p(p-1)\gamma = 1/\{1 + (p-1)\rho\}.$$

We have also $y_{(ij)} = \lambda x_{(ij)}$, $(\bar{y}_i - \bar{y})^2 = \lambda^2 (\bar{x}_i - \bar{x})^2 / \{1 + (p-2)\beta\}^2 = \frac{1}{2} \lambda^2 \{p - (p-2)\lambda^2\} (\bar{x}_i - \bar{x})^2$. Hence expression (1.2) may be transformed into

$$(1.3) \quad \sum_{i < j} x_{(ij)}^2 + \left\{1 - \left[(p-2)/p\right]\lambda^2\right\} \left[(p-1)^2/(p-2)\right] \sum_k (\bar{x}_k - \bar{x})^2.$$

Now consider the identity

$$\sum_{i < j} (x_{ij} - \bar{x})^2 = \sum_{i < j} x_{(ij)}^2 + [(p-1)^2/(p-2)] \sum_k (\bar{x}_k - \bar{x})^2.$$

The left hand side of this is distributed (asymptotically) as χ^2 with $\frac{1}{2}p(p-1)-1=\frac{1}{2}(p+1)(p-2)$ degrees of freedom. The second term on the right hand side is distributed as χ^2_b , where b=p-1, since each of the p variates \bar{x}_k has variance 1/(p-1) and the correlation coefficient between any two of them is 1/(p-1). It follows that the first term on the right hand side is distributed, independently of the second, as χ^2_a , with $a=\frac{1}{2}p(p-3)$. Inspection of expression (1.3) shows that Bartlett's criterion for p>3 is asymptotically of the form $\chi^2_a+\{1-[(p-2)/p]\lambda^2\}\chi^2_b$.

2. A criterion of large-sample χ^2 type. For testing the hypothesis that all correlation coefficients are equal it would in practice be useful to have a criterion

whose limiting distribution is of χ^2 type. Such a criterion, with $\frac{1}{2}(p+1)(p-2)$ degrees of freedom, is provided by the expression

$$\begin{split} &\sum_{i < j} \left(x_{ij} - \bar{x} \right)^2 \\ &= (1/\lambda^2) \sum_{i < j} y_{(ij)}^2 + (2/\lambda^2) [(p-1)^2/(p-2)] \sum_k \left(\bar{y}_k - \bar{y} \right)^2 / \{ p - (p-2) \lambda^2 \} \\ &= (1/\lambda^2) \left\{ \sum_{i < j} \left(y_{ij} - \bar{y} \right)^2 - \mu \sum_k (\bar{y}_k - \bar{y})^2 \right\}, \\ &\text{where } \mu = (p-1)^2 (1-\lambda^2) / \{ p - (p-2) \lambda^2 \}. \text{ If we write} \\ &\bar{r}_k = \sum_i r_{ik} / (p-1) \quad (i \neq k), \qquad \bar{r} = 2 \sum_{i < i} r_{ij} / \{ p (p-1) \}, \end{split}$$

this expression may be put into the form

$$(n/\lambda^2) \left\{ \sum_{i < j} (r_{ij} - \bar{r})^2 - \mu \sum_k (\bar{r}_k - \bar{r})^2 \right\}.$$

In practice the estimate $1 - \bar{r}$ would have to be substituted for the unknown parameter λ . This substitution does not affect the limiting distribution.

On investigation the above statistic is found to be asymptotically equal to -2 times the logarithm of the likelihood ratio criterion. That this is not true of the criterion previously discussed accounts for its limiting distribution not being of χ^2 type. The exact likelihood ratio criterion is difficult to evaluate and complicated in form.

REFERENCES

- Anderson, T. W. (1963). Asymptotic theory for principal component analysis. Ann. Math. Statist. 34 122-148.
- [2] BARTLETT, M. S. (1954). A note on the multiplying factors for various χ² approximations. J. Roy. Statist. Soc. Ser. B. 16 296-298.