OPTIMUM ESTIMATORS OF THE PARAMETERS OF NEGATIVE
EXPONENTIAL DISTRIBUTIONS FROM ONE OR TWO
ORDER STATISTICS

By M. M. Smpiqul
Boulder Laboratories, National Bureau of Standards

1. Introduction and summary. Let

filz) = ¢ exp (—z/a), if z = 0; 0, otherwise;

fa(x) = ¢ texp [—(z — @)/d], if 2 = «; 0, otherwise.
Let x; denote the kth order statistic of a random sample of size n. Harter [1]
discusses the following three problems designated here as Py, Py, and P; :

P; : Best unbiased estimator of the form ¢z for o of fi(z);

P, : Best unbiased estimator of the form ¢i; + cnem for o of fi(z);

P;s : Best unbiased estimators of the form ¢z; + ¢n2n for o, @, and the mean,
, of f2(z). For Ps he shows that the optimum [ is equal to 1 and that the same
m is optimum for all three parameters. In each problem, after setting up the
equation for the relative efficiency of a linear combination of one or two order
statistics, he remarks that he is not aware of any analytical method for deter-
mining the best combination, and hence finds them by exhaustive numerical
computations for n up to 100. In this paper an analytical method for his prob-
lems will be presented. For P; and P; the correct optimum values of & and m
are readily determined for all n. These will be given in Sections 2 and 3. The
equations for P, , however, are quite difficult to solve. The analytical formula-
tion of P, and an approximate solution, arrived at by trial and error, will be pre-
sented in Section 4.

The method is based on the Euler-Maclaurin formula

k—1 k
1) = [ #@) @ — 515h) — 70))

r=

(1.1) ‘
+ (i) [F9 (k) — £9(0)] — (—1—) FOxk) — F90)] + ---
12 720 )

For a discussion of the remainder after a finite number of terms on the right we
refer to [2]. It is sufficient to note here that this is an asymptotic expansion and
the most accurate result is obtained by taking the sum to one-half of the smallest
term.

2. Estimating ¢ of fi(z) from one . ¢z is an unbiased estimator of ¢, where

[1]
(2.1) Cr = I/iai, a; = 1/(n—i+1),
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with efficiency relative to the sample mean given by

2.2) E, = (i ai)z/n Z as.

Using (1.1) and settingy = (n — k + 1)/(n + 1), we have

k k—1
1

=n—k-+1+7 2n + 1) gy
+ 1 1—y2+._.
12(n + 1)2 42 ’
@3) 14 11 11—
T n+1 oy 2(n + 1)2 42

1 1—9
Temry s T
To form an idea of the error of approximation involved, for example, in taking
only three terms on the right of each equation in (2.3), we mention that: (1)
for a fixed n the error is maximum when & = n; (2) for n = 4 the maximum
relative error for ), a; is less than 0.005, and for > _a} less than 0.015; (3) in
each case, the maximum relative error decreases as n increases; (4) the relative
error in E), (when three term approximations for Y a; and D_a; are used)
does not exceed the relative error for Y aj .

Now let g(y) = nE,/(n + 1), so that from (2.2) and (2.3)

(59 + e (50 + - fow

N {—lny +2(n}|- ) <1 7 y) + }2

Considering g(y) as a function of a real variable y, we wish to determine y,,
(n+ 1)7" = y < n(n + 1)7, such that g(yo) is a maximum. The optimum &
is then found by taking n — & + 1 to be the nearest integer to (n 4+ 1)y,.
Differentiating (2.4), and setting ¢'(y) = 0, we obtain, after some simplifi-
cation, the equation

{H(TI{T)?}Jr "'}{—1“y+2(n1+1)<1;y>+ }

“2r gt )t (5

yo is a solution to this equation. If y is fixed and n — o, (2.5) re-
duces to —lny = 2(1 — y), which has a solution y; = 0.20319 correct to five
decimal places. The other solution, y = 1, which is also a solution to (2.5), is
rejected as it leads to the value k¥ = 0. If n = 4, this asymptotic solution ¥,
is in the desired range [(n + 1), n(n + 1)7.

(24)

(2.5)
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We then observe that if n = 4 an evaluation of ¢'(y) at y; and y» = v, +

0.5(n + 1)* shows that ¢'(y1) > 0 and ¢'(y2) < 0. Hence
(2.6) Y1 < yo <y + 05(n+ 1)"N

We then develop y, in the series yo = 41 + ax(n + 1) + aa(n + 1) 7>+ -+,
and obtain a; = 0.39841, @, = —1.16312. Thus

(2.7) Yo = 0.20319 + 0.39841(n + 1)~ — 1.16312(n + 1)72

This determination of y, together with (2.6) is sufficiently accurate for our
purposes to yield the optimum value of %. The optimum k is the nearest integer
to

(2.8) (n 4+ 1)(1 — yo) = 0.79681(n + 1) — 0.39841 + 1.16312(n + 1)7.

As a check one may compare the values of k& thus determined with Harter’s
values for n = 4 through 100 and find that they are always correct. They are
correct even for n = 2 and 3. Only on very rare occasions, when the fractional
part of (n + 1)(1 — yo) as calculated from (2.8) is very close to 0.5, there may
be an ambiguity whether to take the integer just above or just below
(n 4+ 1)(1 — yo). In practice either of the two may be considered optimum as
the efficiencies of the estimates corresponding to these integers will be almost
the same. In any case a further term in the series of 3, , or a comparison of the
efficiencies of the corresponding estimators, can decide between the two.

3. Estimating the parameters of f(z). We will postpone P, to the following
section. In this section we will consider P; due to its similarity with P; . From
Harter’s discussion after his equation (33), it is evident that the problem of
optimum estimators of &, o and the mean, g, of fz(x) reduces to finding the opti-
mum 7 which maximizes

(3.1) E; = (i ai>2/|:(n —-1) <2;n: af)].

Using (1.1) to approximate the summations involved we end up again with
equations (2.4) and (2.5), this time with y = (n — m + 1)/n, g(y) =
(n — 1)E;/n, and (n 4 1) replaced by n elsewhere. Thus the optimum y, has
the same development as in (2.7) with » + 1 replaced by =, i.e.,

(3.2) Yo =2 0.20319 + 0.39841n~" — 1.16312n"

The optimum m is determined by taking'n — m -4 1 to be the closest integer
to nyo , i.e., m is the closest integer to

(3.3) n — nyo + 1 220.79681n + 0.60159 + 1.16312n".

For example, if n = 6, 14, 34, and 88, the optimum values of m are 6, 12, 28,
and 71 respectively, which compare exactly with the values found by Harter
[1, pp. 1088-89].
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4. Estimating o of f (x) from two order statistics. The same technique as
above when applied to the problem of finding the optimum among the unbiased
estimators of the type c: + cmtm for o of fi(x), leads to quite a complicated
pair of equations. The problem is [1, p. 1080] to find the optimum ! and m such
that

m

(4.1) Elm=(2a, N> as 2/ I:(l+2)\)2a,+>\2a]

1

is maximized, wheren = m > 1 = 1, and

m l 1 m m 1
(42) veraya/(Sa - Saya).
I+1 1 1 1
If a summation is approximated by only the corresponding integral in (1.1),
then, settingz = (n — I+ 1)/(n+ 1),y = (n — m + 1)/(n + 1), we have

(Inz + Any)’zy

n = J—
(4.3) P | By = TF N =0y Fasd —=g) ~ gz, y),

say,

~ y(1 — 2)In(2/y)
(44) M= y(1 — z)lny — z(1 — y)lnz~

To find (20, %), 0 < yo < 2o < 1, such that g(zo, yo) is a maximum we set
dg/dx = 0, and dg/dy = 0. The resulting equations seemed to be intractable.
However, an examination of these equations near y = 0 indicated that for the
required solution Iny should be taken near —2.5, and Inz near —1, i.e., ¥ near
0.08 and z near 0.37. A numerical study of the values of g(x, ¥) near the point
(0.37, 0.08) then indicated that zo = 0.361, yo = 0.073, with g(zo , 7o) = .820262.
The surface is quite flat near this point, for example, ¢(.362, .074) = .820261,
9(.362, .075) = .820241; hence a very exact determination of (z,, y) is not
very essential. For an asymptotic solution of P; we then take [ to be the nearest
integer to 0.639(n + 1) and m to 0.927(n + 1). For example, if n = 11, 37,
56, 81, and 94 we obtain (I, m) = (8, 11), (24, 35), (36, 53), (52, 76) and (61,
88), respectively. A comparison with Harter’s values, which are (8, 11), (24,
35), (36, 52), (53, 76), and (61, 88) respectively, shows that the asymptotic
solution is either optimum or very near to the optimum.

5. Acknowledgment. The referee has brought to the writer’s attention a
paper by Sarhan, Greenburg and Ogawa [3], [4] in which they discuss the more
general problem of obtaining estimators for the parameters of an exponential
distribution which are linear in arbitrary number (not necessarily one or two)
of order statistics. In that paper the problem of optimization is solved by maxi-
mizing the asymptotic, rather than the exact, relative efficiency of an estimator.
The referee also suggests that, for P, , if we take [ to be the nearest integer to
0.6386 (n + %) and m to 0.9266 (n + %) the approximation is improved.
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