ON THE OPTIMALITY OF SEQUENTIAL PROBABILITY RATIO TESTS!
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1. Introduction. The sequential probability ratio test (SPRT) for testing a
simple hypothesis H, against a single alternative H; was first proved to be op-
timal by Wald and Wolfowitz [5] in a sense there defined. A much simpler proof
has been given by L. LeCam and appears in Lehmann’s book [3]. In the present
note a proof of this optimality is given which relies primarily on a simple map-
ping theorem.

2. Preliminaries. As is customary, we introduce the auxiliary Bayes problem
of testing sequentially H, against H; when £ is the a priori probability of Ho, w;
is the loss caused by wrong decision under H; and there is a unit cost per observa-
tion. Let a;(3) be the probability of wrong decision and E;(5) the average sample
size under H ; using procedure §. Denote the risk by  (§, wo , w: ; 6). To show that
a given SPRT & is optimal it suffices to show that for each £ 0 < ¢ < 1, losses
wo , w; may be chosen (depending on £) in such a way that & is Bayes relative
t0 £ wo , wy . For if then 6 is any procedure with «;(8) = «:(8),7 = 0, 1, it would
follow in the usual way that £E,(8) + (1 — £)E1(8) = £Eo(8) + (1 — £)Ey(8o)
and letting £ tend in turn to zero and one would yield E;(8) = E;(8), ¢ = 0,1
provided E;(8) < .

The Bayes procedures may be characterized by means of the functions

po(& wo, wy) = min [£w,, (1 — £ wi]

P*(Ey wo , W) = 5];‘131)f* 7 (& wo, wi ; 0)

where ©* is the class of all procedures which take at least one observation. In fact,
for each wo , wy let g (wo , w;) and h(wo , w;) denote the left and right intersections,
respectively, of po and p*in (0, 1) provided po and o* intersect at all; otherwise,
set g = b = wy/ (wo + w). It is shown in [3] that a Bayes procedure continues
sampling beyond n observations only so long as the posteriori probability . of
H, satisfies g (wo , w1) = & = h(wo, wy) forn = 0(% = £).

A SPRT &, characterized by boundaries B, A(B < A) may be described
equivalently as taking a first observation and then sampling further so long as

go=1/14+A01 -8/ <& <UD+ B1—-§/E=h.
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Thus, for § to be Bayes relative to & w, , w; it must be shown that for gy < he
there is a solution to

(2]-> g(’ll)o ) wl) = Go, h’(wo ’ wl) = hO

and that the Bayes procedure associated with ¢ and stopping boundaries (2.1)
takes at least one observation. The latter requirement is that go < & < ho, or
B < 1 < A. However, it is easy to see that this restriction may be dropped pro-
vided in the optimality definition one compares SPRTs with only those proce-
dures which take at least one observation.

3. Proof of optimality. It is shown first that g and & are continuous when
wo,wy > 0. Let e < £ <1 — e Then p* (¢ wo, wy) < 1+ min (wo, w;) < B
for (wo , w,) suitably bounded. It follows that o™ (£, wo , wy) is the infimum of risks
over only those procedures that take at least one observation and whose risks
are at most B. For such a procedure E,(8) + E;(6) = B/e. The risk functions of
all these procedures are equicontinuous when £, w,, w; are restricted as above
and this fact implies that the infimum p* (¢, wo, wy) is continuous in the open
region 0< £ < 1, Wo , W1 > 0. Set')’(é, Wo wl) = PO(E, Wo wl) - P*(‘E, Wo , wl)-
It follows that the function

w1
wo + Wi

‘I,(E; wO’wl> = 'Y(E’ wO’wl) {‘E -

+ max I:O’ i (’wo ,L'll)‘l 'wl, wo ’WI>]}

is continuous in the same region. By considering the cases v (wi/ (wo + wi),
wy, wy) > 0, =0, <0, it is seen that g (wo , wy) is the unique solution in £ to the
equation

(3.1) V(& wo, wy) = 0, £ = wi/ (wo + wy).

Suppose a sequence (wo, , Wi,) converges to a point (wo , wy) with we, wy > 0
while g (won , win) — ¢'. Since always min [1/wo , wy/ (wo + w1)] < g (wo, wy) =
wy/ (wo + wi), it must be that 0 < ¢° < wy/ (wo + w,). From the above,

¥ (g (Won , Win), Won , W1n) = O and by continuity, ¥ (g’, wo, wy) = 0.
By virtue of the uniqueness of the solution to (3.1), it follows that
lim g (Won , win) = ¢ = g(wo, wi).

This shows that g (likewise h) is continuous.

In the wy — w; plane consider the square path consisting of the line segments
Ci:wpy=1,1 = w, = K (K will be chosen shortly); Cs : 1 £ wo = K, w; = 1;
Ci:wo=K,1=w = K;and, Cy:1 = wy £ K, w; = K. Define the complex-
valued function ® (wo , w;) = g (wo, w1) + 2h(wo, w;). When either w, = 1 or
w; = 1 a Bayes procedure (not unique in this case) is to take no observations
and guess that hypothesis which is associated with the smaller loss. Then
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g = h = w;/ (wo + w;) since otherwise there would be a range of £ for which it
would pay to sample. Hence, as wo , w; traces out C; U C;, ® moves along the
line segment joining (1 + ¢)K/(K + 1) and (1 + 2)/(K + 1).

To see the behavior of ® on C; and C; we shall compare the risk of a Bayes
procedure 8z relative to £ wo, w; with the risk of a fixed sample procedure &g
which takes N observations and has error probabilities a; . Since

po(g, wo, w1) < p* (g, wo, w;) and

7 (& wo , wy 3 85) = min [po (& wo, wi), p* (& wo , w1)],

one has
wog = po (g, Wo , W)
= r(g, wo, Wy ; 85)
(3.2) = r(g, wo, w1 ; Or)

N + gogWo + (1 —_ g)alwl .
On C;, wy = K, w; £ K and (3.2) gives g(K, w;) < N/K 4+ a0 + a1 . Quite

analogously, h(wy, K) = 1 — (N/K 4+ a + o) on Cs. Choose, now, first
a, a; small enough and then K large enough so that N/K + a + a1 <
min (go, 1 — ho). With this choice of K, ®e[®] = ¢g(K, w;) < go on C; and
gm[®] = h(wo, K) > hoon Cy . Recalling that go < ko, it is clear (a diagram may
help) that ® encircles the point go + ko as wo , wy traces out once its whole path.

Lemma (Rado and Reichelderfer [4], p. 390) : Let R be a bounded simply con-
nected Jordan region in the plane and let C be vts arbitrarily oriented boundary curve.
If ® is a complex-valued function continuous itn R and ® 5 0 in R, then
Vare [argument ®] = 0.

Application of this Lemma to the continuous function ® — (go + %ho) shows
that (2.1) has a solution.

REMARKS. It should be pointed out that the novelty of the above proof of op-
timality consists in applying the mapping lemma to show directly that the pair
of equations in (2.1) has a solution. Wald and Wolfowitz [5] originally proved
the solvability of (2.1) (they actually treat a closely related pair of equations) by
choosing w; depending on w, so that one of the equations is satisfied and then
varying w, to satisfy the other equation as well. Arrow, Blackwell and Girshick
[1] obtain a pair of equations for w, and w; that are linear in these variables with
coefficients depending on g and % in a complicated way. The possibility of solving
for w; , w. in terms of g, h is not fully settled, however, inasmuch as the simultane-
ous equations might be incompatible for some go , ko . Indeed, compatibility is as-
sured only for g, ko in the range of the mapping (g, #). Proceeding similarly,
LeCam in [3] effectively proves that these equations are solvable by varying
losses, again one at a time. Burkholder and Wijsman [2] make use of the fact that
to prove optimality it suffices to show only that there exist certain go, ho suffi-
ciently close to 0 (and 1) for which (2.1) is solvable.
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