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1. Introduction and summary. Most of the nonparametric tests available in
the literature use the assumption that the distributions concerned are absolutely
continuous. Under this assumption the power efficiencies of these tests for para-
metric families of distribution are relatively well known. A problem arises, how-
ever, when we assume that the distributions are discrete. One would then need
to solve the problem of ties, which occur with positive probabilities. One way of
getting round this difficulty would be to randomize the order of the tied observa-
tions and employ randomized tests. Putter (1955) has presented some interesting
results comparing the relative efficiencies of these randomized tests with suit-
ably modified non-randomized tests, when the distributions are discrete. One
particular aspect of the nonparametric test, however, has to the best of the
author’s knowledge, not been discussed so far. This concerns the efficiency of
non-parametric tests when the distributions are discrete relative to the most
powerful tests available for such distributions when the latter belong to para-
metric families. One has the impression that the relative efficiencies for such
situations are indirectly related to the degree of “discreteness” of the distribu-
tions. In other words, the fewer the number of points of probability concentra-
tion, the higher is the efficiency. To determine how far this conjecture agrees
with the facts, we have discussed the special case of the two-sample Wilcoxon or
Mann-Whitney test (Mann and Whitney (1947)). The power efficiency of this
test has been worked out for the class of discrete distributions which are of the
exponential type, and finally three examples have been discussed.

2. The Mann-Whitney test. Let (X, ..., X) be a sample of m independent
observations on a random variable with d.f. F(z) and let (Y, ---, Y,) be a
sample of n (= m) independent observations on another random variable with
d.f. G(z). We assume that both F and G are purely discontinuous, with the same
set of discontinuity points which for the sake of simplicity we take as 0, 1, - - - .
Let ¢(u) be defined by

c(u) =0 if u <O,
(2.1) =} if w = 0,
=1 if w > 0.

Then consider the statistic w = > ry D> i c(x; — y;)/mn. Obviously, w is a

Received April 5, 1962; revised December 13, 1962.
1 Now at the Jowa State University.

612

[
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%}ﬁ
The Annals of Mathematical Statistics. IIKOIRS ®

Www.jstor.org



EFFICIENCY OF MANN-WHITNEY TEST 613

symmetric function of z;, -+, z» and also symmetric in g, ---, y,. Then
if m— o , m/n — a, where a is a finite positive constant, it is well known that
m (W — E(W)), where E(W) is the expectation of W, has, asymptotically, a
normal distribution with zero mean. Thus, if F and G are both absolutely con-
tinuous the Mann-Whitney test for the hypothesis Hy : F = G consists of re-
jecting Ho when [W — Eo(W)| is too large, Eo(W) being the expectation of W
under Hy. When F and G are purely discontinuous a slight modification in the
test-criterion is called for. This is necessary because even under Hy , the variance
of W written Vo(W) is not independent of the common unknown d.f. ¥, as we
shall see in Section 3, although Eo(W) is, indeed, 1ndependent of F. The new
test critrion W' has been defined in Section 3 and it is proved that under H,,
W' has, asymptotically a normal distribution with zero mean and unit standard
deviation. From the point of view of power efficiency it is, perhaps, better to
regard this modified Wilcoxon or Mann-Whitney test as a conditional test in
the presence of ties, but the cut off points for the test-criterion will then be dif-
ficult to determine and the tabulation involved will be prohibitive. It is for this
reason we have thought it better to consider only the unconditional sampling
properties of W.

3. Asymptotic expressions for the mean and the variance of W. It is easy to
show that

E(W) = E{e(X, — Y1)} = }P(X; = V1) 4+ P(X; > 1))
(3.1)

1
_7

||[V]8

PiPi + Z pmz = u (say),
where pi, p; are the probabilities for F and G respectively at the point ¢ = 0,
- . Further,
Vie(X: — Yy} = Vie(Xy — Y1)}
=1P(X,=Y) + P(X,> Yy — 4

(3.2) i
=12 pdit Z P — W

= A (say).
When 7 5 k,
Cov {e(X; — Y)), (X, — Yj)}
={PXi=Xi=Y,) + H{P(X: 3 X, = ¥))
(3.3) + P(Xe>Xi=Y)} +P(Xi, Xi > V) — 4

0

iZ; pip: + E popi+ E PPk — 4’ = B(say).

1<j=0
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Similarly, when j = k,
Cov {C(Xz - Yj), C(Xl - Yk)}
(34)

=12 ppi + D ppibi +1 >§_?fﬁjﬁk — i’ = C (say).

=0 i>j=0

And, finally,

(3.5) Covie(X: —Y;),e(Xp — YY)} =0

for all other values of 7, j, k, I. Using results (3.2)—(3.5) we have

mV (W) = f: an Cov {¢(X; — V), (X — Y1)} /mn’

(3.6) =1 =1

= Bm/n + C + o(1).
Let, now, m — «,n — «, m/n — a. Then
(3.7) mV(W) — aB + C

and hence m}(W — p)/(aB + C)* has, asymptotically, a normal distribution
with zero mean and unit standard deviation. Note that when F = @, ie.,
pi=pi for all 4 =0, 1,---, p=p= %Z:;Op% + 3(1 — :'a=0p?) =13
B=DBy= (1 — 2.20p})/12and C = Co = By,. It follows, therefore, that
even when F = @, the variance of W depends on the common unknown d.f.

F. Let us, now, define (];7) Z as the number of triplets (z;, z;, 2:)(% & j # k),

where for the sake of convenience we have defined y; = Zpyi, 1 =7 < n,
such that z; = z; = 2,(N = m + n). Z, then, can be written in the form
Z=212Z/M, (M = (g)), where Z; is a random variable associated with
the ¢th triplet, taking the value 1 if the 2’s are all equal and 0 otherwise. Con-
sidering the fact that the total number of pairs Z;, Z, such that there is no

2; common between them is equal to <Z§)(N ; 3) , the non-zero contribution to

2
V(Z) is of order (]?‘: ){({;’ ) - (N N 3)} / @’ ) ie., of order N'. Further as

m— o, m/n—a, B(Z) = 270 (5: + aps)’/(1 + a)° = ¢ (say). It follows,
therefore, that Z tends to { in mean square and hence in probability. When H, is
true ¢ = D .vop! and so under Hy, W = (12 mn)}(W — 2)/{(m + n)
a1-z )}* has, asymptotically, a normal distribution with zero mean and unit
standard deviation.

Let us now assume that p; = p:(6) and p; = p:(6) where 6, 8 are unknown
values of a parameter occurring in F(z) and G(z). Note that

F(z) = i;ﬁpi(o), G(z) = é?i(é).
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Write 3 = 0 — 8, 6, = k/m! where k is an arbitrarily fixed finite positive con-
stant. Let H,, denote the hypothesis = 8., let ' = E(W') and denote by
Vu(W') the variance of W’ under H,, . Then it can be shown quite easily that
asm — o m/n—a,Z — > i p: in probability, (du’/d8) s,/ (du’/d8) s=0 — 1,
and V(W) /Vo(W') — 1. Also, under the sequence of alternatives H,,, W’
has, asymptotically, a normal distribution. Define r(W') = {(dp'/db) s=0}*/
(mVo(W)}. As m— o, m/n—a, r(W)—12D"/{(1 + a)(1 — X pi)}
where D = £ 70 pi dp:(6)/d0 + D3m0 p:i dp;(0) do.

4. Asymptotic efficiency of the Mann-Whitney test for the exponential
family of distributions. Let p.(f) = exp (10, + © + h) where ¢, h are functions
of 2 only and O, , © are functions of 4. Assume that ©; is a monotonic function
of 8 and that the derivatives of ©; and ® with respect to 6 of order two and lower
exist and are continuous for all . Let

1= {35 ux) + Zur)} /[ (mt

m n 3
0 = {356 /m = 3 ¥t fm/m )}
Then the best similar test ¢ = ¢(u, t) for Hy: 6 = 8 against H: 0 = 8 is, by

virtue of Theorem 3 Section 4.4 of Lehmann (1959) (after obvious simplifica-
tion) defined by

o(u, t) =1 when 4 < Cy(&) or >Cx(t),
(4.1) = (%) when u = C:(t) 7= 1,2,
=0 when C1(t) < u < Ca(t),

with the C’s and v’s determined by Eof¢(U, T) |8} = a and E{Us(U, T) |t} =
aEy(U | t) where the expectations are calculated under H, and.conditional on 7'
being fixed at ¢. These equations can be solved quite easily in view of the fact that
the conditional distribution of U given T is independent of 8. Further, one can
show, using known properties of symmetric functions that Eo(U |t) = 0 for
almost all ¢ and all values of n.

Note that U and T have, asymptotically, a joint bivariate normal distribution
with Cov (U, T) = {V(i(Xy)) — V(YD) (mn)/(m + n)}. Further

Cov (U, T|Hy) =0

and Cov (U, T |Hn) = O(m™) so that both for H, and the sequence of alter-
natives {H,}, U, T have, asymptotically, independent normal distributions.
Then, by a theorem due to Hoeffding and quoted as Theorem 4.1 of Section
7.4 in Fraser (1957) the conditional test ¢(u, t) is, asymptotically, equivalent
(both in size and asymptotic power with respect to {H,}) to the test ¢(u)
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defined by
o(u) =1 when v < C; or >C:,
(4.2) = v whenu = C; 7= 1,2,
=0 when C; < u < (s,

where the C’s and v’s are determined by Eo{¢(U)} = o and Ef{Us(U)} = 0.
Note that C;, C; both tend to finite limits as m — « and m/n — a and that
the limits have the same magnitude but opposite signs.

Write » = E(U), and let Vo(U), V.(U) denote respectively the variances
of U under Hy and H, . It is, then easy to check that as m — «, mn — g,
(dv/dB) s=s,/ (dv/d8) s=0 — 1, Vw(U)/Vo(U) — 1. The asymptotic normality
of U under both Hy and the sequence H, has already been established. Define,
now r(U) = {(dv/d8)s-o}’/{mVs(U)}. Then from Pitman’s theorem for two
sided tests (as quoted in Fraser (1957), Theorem 3.3 p. 273 and modified for two
sided tests) the asymptotic eﬂimency ¢ of W’ relative to U is the limit, as m — oo
and m/n — a, of the ratio r(W') /r(U).

6. Illustrations. , .
ExampLE 1: Poisson distribution. p.(6) = exp (—0)0°/¢! ¢ =0, 1, --- and
0 < § < . Note that dp:(8)/d0 = p;_1(8) — pi(6) so that

D = __(Z1=0 DPPin, +Zl—0 pz

p.(6) is exponential and e = 30(D_io ppin + e (1 — e pd).
Itlseasytoseethata,so—)O (1 — > p%)/60 —3,D — —% and hence ¢ — 1.
Further, we can write D = —3E{px(0) + px+1(0)} where X is a Poisson vari-
able. Remembering that X' = (X —0)/ ¢* has, asymptotlcally (ie.,a8 0 — «),
a normal distribution we can easily show that to order 67, } px(8) ~ pxia(6) ~
exp (—X"%/2)/ (278)* where ~ denotes equivalence in probability, so that to
the same order E{px(6)} = E{px+(0)} = {2(70)%}_1 Also, to order 67, it
can be proved that

0

Y v} = E{px(8)} = {2(3)0} .

==l

TABLE 1

Asymptlotic efficiency of the Mann-Whitney test for the Poisson distribution
for selected values of 0

[} e
0.0 1.00
0.2 0.92
0.5 0.91
1.0 0.92
3.0 0.94
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As a result when 6§ — «, ¢ — 3/7. This agrees with the asymptotic efficiency
of the Mann-Whitney test for normal distributions (Dantzig (1951)). To order
9" we can prove that e = (3/m){1 — (326)™" + [2(3)*#0]—1}. Table 1 gives
the values of e for a few selected values of 8.

We now consider two different distributions at the two extreme scales of dis-
creteness.

ExampPLE 2: Binomial distribution. Let X be a binomial variable which can
take values 0 and 1 with probablities 1 — 8 and 6 respectively so that we can
write pi(8) = 6°(1 — 0)"™, ¢=0,1 and = 0 for ¢ > 1, 0 < 6 =< 1. Evi-
dently, this is an exponential distribution and it can readily be shown that e = 1
in this particular case. Since X can take only two values 0 and 1 W' is, stochas-
tically, equivalent to the standardized difference between the means of the
X s and the Y ;’s which, however, is the optimum test criterion to test the dif-
ference between two binomial probabilities 8 and 8. Hence e should be equal to
unity as it, really, is.

ExampLE 3: Geometric distribution. For this particular case p:(0) = 6°(1 — 0),
t=0,1,---,0 = ¢ < 1. This again is an exponential distribution and it can

be shown that e —1— 9(1 + 6)>. For 0 =0,¢e=1ande | 0.75as 6 — 1.
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