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THE P6STERIOR t DISTRIBUTION!
By M. StonNE

Princeton ‘Um'versity and University College of Wales

1. Introduction and summary. For the problem of inference about a real
parameter u on the basis of n independent observations i, ---, ®. (or X)
each distributed as N (g, ¢°) with ¢° “unknown”, it is commonly asserted, for
example in [2] p. 465, that the Bayesian method is close to other forms of in-
ference (significance tests, confidence and fiducial intervals) since it too may be
based on s,_i(f), the probability density function (pdf) of Student’s ¢ with
n — 1 degrees of freedom. The Bayesian role of s,—;(¢) is that of the posterior
pdf of t = [n(n — 1)/SP(& — u), where & = n* 2 z;and S = 2 (z; — &)°
are the sufficient statistics for x and o°. It results from formal use in Bayes’s
Theorem of the improper prior pdf for u and ¢ described by “independence of
u and log ¢ and their uniform distributions on R"’. More convincing support
for s,_1(t) as a posterior pdf could be obtained by detailed examination of the
product space of proper (integrable) prior pdfs and (Z, S) and the determina-
tion of the essential features of the region where replacement of the posterior
pdf of u by that derived from s, ;(¢) does not seriously affect inference about u.

In this note, attention will be confined to prior pdfs in the following class.
Let w denote the Fisher information o and let I{ } denote the 0-1 indicator
function of a set. Consider prior pdfs for 4 and « drawn from the sequence

(1.1) pa(p, 0) « o T{p, @ pre < p < poa, wia < 0 < wpaf =12 -,

For each member of this sequence, u and w are independent while x and log «
(or log o) have rectangular distributions (from which it is clear that the choice
of (1.1) is motivated by the improper prior pdf for p and ¢ above).
The posterior pdf of x obtained by combining pa(u, ») with the likelihood
function
p(x |, ©) « " exp [—dnw(z — #)* — 3wl

is proportional to
W
f W™ exp [—3nw(E — u)® — 3wSldo-T{p| pa < p < p2a}
Wila

giving, with the change of variable w = w[1 + £/(n — 1)18
[1+:2/ (n—1)180 24

pa(t | X) « sus(t) WP dy
(1.2) [1462/ (n—1) 18014

I{t| In(n — 1)/8P(F — paa) <t < [n(n — 1)/SPH(& — pa) ).

To obtain s,_1(t), Jeffreys (p. 68 of [1]) uses a convergence argument which, in
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our specialisation, would involve letting

(1.3) Pla = —®, pgg—> 0, wia—>0, we— 0 a8 a— ®
as necessary and sufficient conditions for

(14) lm pa(t| x) = su(t)

for all values of x.

In (1.4), x is kept fixed. However, in changing «, we are changing the prior
distribution used, so that keeping x fixed has no obvious relevance. To emphasize
that a different x would normally be associated with a different prior pdf, we
will, except in the proofs of Section 2, write X, , £, Sa, t. for the x, &, S, ¢
associated with p.(u, ).

A radically different justification of s,_i(t) is provided as follows. Let us sup-
pose that the person who is to make the inference about u has the prior pdf
ps(u, w) for s some positive integer, that is, a pdf that happens to be a member
of the sequence (1.1). Examination of (1.2) shows that he can take s,—i(%)
as a good approximation to his posterior pdf provided

(15) Sewne K1, S > 1, 87 (uae = &) > 1, S (& — m) >.1.

Now a person holding the prior pdf ps(u, c;)) would expect to obtain x,’s accord-
ing to the marginal pdf p.(x.) = [ [ p(Xs | #, @)Ps(s, @) du dw. The probability
of (1.5) under p,(x,) is therefore the person’s prior probability of being able to
use sn—1(t;) as a basis for inference about u. In the light of this, if, for the se-
quence (1.1), we were to have
(i 6) plim S.w1, = 0, plim S,wee = o,

' plim 82 (uza — %) = @,  plim S7H(Za — pa) = o

with the plims evaluated with respect to the sequence of marginal distribu-
tions pa.(X.), we would, by proceeding down the sequence, be able to invest
8x—1(t) with an asymptotic justification. (By plim z = «, we mean that

lim Prob (2 < K) = 0 for all K.)

In Lemma 1 of Section 2, with p;, = wia(ma — Mla), P2a = wia(uh — Wa),
necessary and sufficient conditions for (1.6) are shown to be

(8)  pza/pra— ®
(1.7) (b) pra—

(¢) lim inf [log p1o/10g p2s] = 0 as a — .
Lemma 2 then shows that (1.6) is equivalent to
(1.8) plim pu(t | Xe) = $na(2)

where the plim is again evaluated with respect to the sequence po(X.), @ — .
Hence (1.7) is necessary and sufficient for (1.8) which, since it allows direct
comparison with the Jeffreys approach in (1.3) and (1.4), we state as the prin-
cipal theorem.
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The interpretation of the conditions (1.3) is superficially straightforward; it is
that the prior pdfs for x and « should (separately) approach conditions repre-
senting “complete ignorance”. (1.7) is apparently more complex. In the require-
ment pya/pia — ®, it agrees with (1.3); its principal divergence from (1.3)
lies in the existence of the joint conditions, (b) and (c), on the developments of
the prior pdfs of y and w. pi. and p.,, may be regarded as measures of the in-
formation about u in the least and most informative conditional distribution
p(x | u, ») allowed by pa(p, »), relative to the prior information about u meas-
ured by the quantity (usa — wia) . (1.7) (¢) requires that, although there is no
necessity for pi. to approach zero at all, if it does so, it should not do so too
rapidly that is, loosely speaking the least informative conditional distribution
should not be too uninformative. '

For the case pia = —@, mpa = @, w1a = o', we = @, (1.3) requires — o <
A < 0, while (1.7) requires —2 < XA < 1. The case pra = —1, upe = 1, 01 = 1,
wse = a satisfies (1.7) but not (1.3).

The comparison of (1.3) and (1.7) is assisted by noting that ¢, is invariant
with respect to the simultaneous transformations of z and u, * — 6.2 + b,
= aap + ba . We would therefore expect that any reasonable condition on the
sequence (1.1) for the asymptotic relevance of s,—1(t) would be unaffected by
these transformations, when coupled with & — az w. (1.7) agrees with such ex-
pectation while (1.3) does not.

2. The ¢ distribution as a probability limit. In the proofs of this Section, the
suffix « will be omitted for simplicity but for Lemma 2 its implicit existence will
be referred to.

Lemma 1. For the sequence of pdfs (1.1), we have (i) plim S.wi. = 0 (ii)
plim Sawe = o (iii) plim 82} (Fa — pa) = @ (iv) plim 83} (se — Zo) =
if and only if (&) pra/pra — @ (b) paa — o (c) lim inf [log pia/log p2a] = 0.

Proor. For (i), Sw; = Sw(wi/w). By (1.1), log (wi/w) is uniformly dis-
tributed in [log (wi/w:), O] whence “ps/p1 — ©” & “wy/w; — & “plim
(01 / w) = 0” & “plim Sw; = 0” using the fact that Sw has a constant dis-
tribution. For (ii), Sws = Sw(ws/w) and, by similar argument, “py/p; — ”
& “plim (w/w) = ©” < “plim Swy, = ©”. Hence (a) is necessary and
sufficient for (i) and (ii).

We now show that, given (a), (iii) is equivalent to (b) and (c). For

S7HE = m) = (80) 7 (& — w) + (S0) Ht(u — w).
Since Sw and (£ — 1) have constant distributions and Sw > 0, it follows that
(2.1) “plim §7H(& — w) = ” < “plim ' (p — p) = ©”
. < “plimw = «©”
where u = w'(u, — p1), v = (u — p)/(ue — w). The prior pdf of (u, ») is, by
(1.1),
(2.2) log (po/p) ' I{u, v | oy < u < p2,0 < v < 1}.

For arbitrary K > 0, let #(K) = Prob (uwv > K) according to (2.2). Then
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integration of (2.2) gives

W(K) = 0) P2 < K

_ 4y _log (K/p) —K/p2+1

(23) =1 og (/o) k<
K/pi — K/p»
=1-"" K <ps.
log (p2/p1) P

We show that, given (a),
(24)  “p(K) > 1 forall K > 07 “(b)and (c)”.

The first line of (2.3) shows that “xr(K) — 1 for all K > 0” = “p;— «” or
(b). Taking K = 1, (2.3) shows that =(1) < 1 + log pi/log p2for p; <1 < ps
and hence that “m(K) — 1 for all K > 0” = “xr(1) > 1 and py— =’ =
“lim inf [log pi/log ps] = 0” or (c). Hence “x(K) — 1 for all K > 0” = “(b)
and (c)”. On the other hand, from (2.3), =(K) > 1 — [log (K/p1) + 11/
log (pz/p1) for pp < K < pyand w(K) > 1 — 1/log (ps/p1) for K < p; . Hence,
given (a), that is, ps/p1 — ®, we see that “p, — o’ implies

lim inf 7(K) = 1 + min{0, lim inf [log p1/log (ps/p1)]}.

But it may be verified that “(b) and (¢)” = “lim inf [log p1/log (p2/p1)] = 0.”
So, given (a), “(b) and (¢)” = “x(K) — 1 for all K > 0” and (24) is es-
tablished.

Now “x(K) —1 for all K > 0” & “plim wv = »”. So (2.1) and (2.4)
establish (b) and (c) as necessary and sufficient for (iii), given (a). By anti-
symmetry, (b) and (c) are also necessary and sufficient for (iv), given (a).
But (a) is necessary and sufficient for (i) and (ii) so that (a), (b) and (c) are
necessary and sufficient for (i), (ii), (iii), (iv), establishing the lemma.

Lemma 2. Conditions (i), (ii), (iii), (iv) of Lemma 1 are necessary and sufficient
for plim pa(t | Xa) = 8n_1(t).

Proor. In (1.2) write & = [n(n — 1)/8HE — m),

t, = [n(n — 1)/SFE — m),

[14+82/(n—1)]18w,

AL, 8) = f WP gy,

[1+£2/(n—1)]18wy

B(S) = f P (DA, S) di.

Then ,
(2.5) p(t|x) = saa(D)A(, S)BWS)II{t |t < t < t}.

Necessity of (i), (ii), (iii), (iv). From (2.5) “plim p(¢|x) = s,a(t)” &
“plim A(t, S)[B(S)[I{t|ts <t <t} =17 “plim (—4) = plim & =
and plim A(¢, 8)/B(8) = 1”. Suppose plim Sw; # 0. Then there exist ¢ > 0,
8 > 0 such that, for arbitrarily large «, Prob (Swy > €) > 8. Choose 6; > 0
and 6; > 6, such that 7" exp {—1(r — 1)¢(61)¢} < % where ¢(8) = [1 + 6*/
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(n — 1)] and r = ¢(6,)/¢(6:). Then with the substitution v = rv for A(6:, S),
we have

A(6,,8)/A(6:,8)
(2.6) $6VS0z . 608wy .
= f Pt D gy / f WD du .
¢ ¢

(01)8wy (01)8wy
The maximum ratio of the v integrand to the corresponding value of the u inte-
grand is 7" exp [—1(r — 1)¢(6:) Sei] which, by definition of » and 6,, is less
than % if Sw; > e Hence A(6:, S)/A(6,, 8) < %if Sw; > eand therefore, for
arbitrarily large «,

2.7) Prob [A(6., S)/A(6:, 8) < ] > 6.

But if plim A (¢, 8)/B(8) = 1, given the & of (2.7) and ¢ > 0, there exists o
such that, for @ > a*, 1 — 3 < Prob [L — ¢ < A(6;, 8)/B(8) <1+ ¢
for i =1, 2] £ Prob [(1 — )/(1 + €) < A(6, S)/A(6:, S)]. Taking
& < 1 yields a contradiction with (2.7). Hence “plim p(¢|x) = suu(f)” =
“plim Sey = 0”.

Suppose plim Sw; = 0 but plim Sw, # «. Then there exist K > 0, 6> 0
such that, for arbitrarily large @, Prob [Sw. < K] > 8. Writing E(z, y) =

1, L(p —2) —
z pAmp D eTh g/ 4 WP du, we get

sign (8/0y)R(z, y) = sign {r'" exp [—3(r — 1)y] — R(x, y)}

which is negative for r > 1(82 > 6; > 0) since the minimum value of the ratio
of the v-integrand of R(x, y) to the corresponding value of the u-integrand is
7" exp [—4(r — 1)y]. Hence, if Swx < K, A(6;, 8)/A(6:, 8) or R($(61)Swr,
6(8;) Sws) exceeds R(¢(61)Swi, ¢(6:)K). But plim R(¢(0:)Swi, ¢(61)K) =
R(0, $(6,)K) which, by back substitution r» = u in the expression for R(z, y),
is seen to exceed unity. Hence there exists H > 1 such that, for arbitrarily large
a, Prob [A(6:, 8)/A(6:, S) > H] > §, which, as for (2.7), is found to con-
tradict “plim A(¢, S)/B(8S) = 1”. Hence “plim p(i | x) = 841(t)” = “plim
Sw;, = . Hence the necessity of (i)—(iv) is established. For their sufficiency

te o . N
0< f sna(8) dt f W P gy — B(S)
ty 0

toy [1+t2/(n—1)] Sw; ©
= Sn—1(t) [ / + f ] w2 dy dt
ty 0 [14£2/(n—1)1 8wz

" 42/ (D1 Swy . o
< f 8,—1(t) [ / WP du] dt + f WD gy
'~ o0 Vo Swa

_ P(%n) oo[ Se L(n—2) —Iv—3t2(n—1)"1v ]
= fr(n — DPTG( — D [ f v d | dt

©
+ uf}(n—z) 6—9"4 du
Bwge

(2.8)

25[‘[%”] 891 4 ) o ® %(n;Z) tu
= - v e " dv U e “du
TT3(n — DI * e
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having written v = [1 + ¢//(n — 1)Jv. But (iii) and (iv) imply plim ¢, = — o,
plim ¢ = «. Hence, with (i) and (ii), (2.8) implies

plim B(S) = ‘[ WP gy,

while, by (i) and (ii), plim A(f, S) = [§ WP gy also. So, by (2.5),
(i), (ii), (iii), (iv) imply plim p(¢|x) = s.—i(t), establishing the lemma.
Combining Lemmas 1 and 2, we have the
THEOREM. Necessary and sufficient conditions that plim p.(t|X.) = s.1(2)
are (2) pra/pra = ®© (b) paa — ® (¢) lim inf [log pia/log (p2a/p1a)] 2 O.
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