ASYMPTOTIC NORMALITY AND CONSISTENCY OF THE LEAST
SQUARES ESTIMATORS FOR FAMILIES OF LINEAR
REGRESSIONS'

By F. Eicker
University of Freiburg im Breisgau
1, Summary and introduction. This paper deals with linear regressions
(1.1) Y = TP + - + Tugbg + &, k=12, ...

with given constants x;», and with error random variables ¢ that are (a) un-
correlated or (b) independent. Let Ee, = 0, 0 < Ee < o for all k. The in-
dividual error distribution functions (d.f.’s) are not assumed to be known, nor
need they be identical for all k. They are assumed, however, to be elements of a
certain set F of d.f.’s. Consider the family of regressions associated with the
family of all the error sequences possible under these restrictions. Then conditions
on the set F and on the zi, are obtained such that the least squares estimators
(LSE) of the parameters 8;, --- ,8, are consistent in Case (a) (Theorem 1) or
astmptotically normal in Case (b) (Theorem 2) for every regression of the
respective families. The motivation for these theorems lies in the fact that
under the given assumptions statements based only on the available
knowledge must always concern the regression family as a whole. It will
be noticed moreover that the conditions of the theorems do not require any
knowledge about the particular error sequence occurring in (1.1). Most of the
conditions are necessary as well as sufficient, with the consequence that they
cannot be improved upon under the limited information assumed to be available
about the model. Since the conditions are very mild, the results apply to a large
number of actual estimation problems.

We denote by §(F) the set of all sequences {ex} that occur in the regressions
of a family as characterized above. Thus, $(F) comprises all sequences of un-
correlated (Case (a)) or independent (Case (b)) random variables whose d.f.’s
belong to ¥ but are not necessarily the same from term to term of the sequence.
For each G ¢ F the relations [zd@ = 0 and 0 < [2°dG < « hold. In this
paper, F(F) may be looked upon as a parameter space. A parameter point then
is a sequence of F(F). Correspondingly, we say that a statement holds on F(F)
(briefly on F) if it holds for all {e} ¢ F(F). The statements of Theorems 1 and 2
are of this kind.

The proof of Theorem 1, as well as the proof of the sufficiency in Theorem
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2, is elementary and straight forward. Theorem 2 is a special case of a central
limit theorem (holding uniformly on F(F)) for families of random sequences
[3].

Some similarity between the rolesof the parameter spaces $(F) inour theorems
and of the parameter spaces that occur, e.g., in the Gauss-Markov and related
theorems may be seen in the fact that these theorems remain true only as long
as the conclusions in the theorems hold for every parameter point in the re-
spective spaces. As is well known, the statements in the Gauss-Markov and
related theorems hold for every parameter vector 8, -- - , 8, in a g-dimensional
vector space (see e.g. Scheffé 1959, p. 13, 14).

A result in the theory of linear regressions that bears some resemblance with
the theorems of this paper has been obtained by Grenander and Rosenblatt
(1957, p. 244) . Let the error sequence { ¢} in (1.1) be a weakly stationary random
sequence with piecewise continuous spectral density, and let the regression
vectors admit a joint spectral representation. Under these assumptions Gre-
nander and Rosenblatt give necessary and sufficient conditions for the regression
spectrum and for the family of admissible spectral densities in order that the
LSE are asymptotically efficient for every density of the family.

In Sections 3 and 6 we discuss some examples relevant to Theorems 1 and 2.

2. Notations. The (real) regression equations (1.1) for £ = 1, --- , n can be
written in matrix notation as

(2.1) y=XB+ e
with Yy = (yl,"'ryn)ly € = (61""1%),7 B = (611 ""Bq), (the prime
denotes the transpose), and X = (zxm), the (n, g)-regression matrix. The

dependence on the sample size n (as of the symbols ¥, ¢, X, and of various
others later to come) is not always marked when confusion seems unlikely.

Let r¢ be the kth row and z; the jth column of X, , so that X, = (7, - - , Tn),
X, = (&1, -+, %,). Let the rank of X, be ¢g. Then the same applies to X, ,
n > q. Putting X’X = P, the normal equations become

(2.2) X'y = Pb

where b, more explicitly b, = (ba, - - -, bug)’, is the vector of the (unbiased)
LSE for 1, - -+ , B, . Henceforth, we restrict n to values n = ¢. Then P™" exists,
and

(2.3) b—B8=P7X
(2.4) cov (b — B)(b — B)' = PT'X'SXP™!, 8 = covec.

The following notations will be useful. Let p;(n) be the ¢th column of P, and
(2.5) usd = ripi(n).

As we shall deal with each component b,; of the LSE b, separately, it is super-
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fluous to carry always the superscript ¢ in (2.5). Thus e.g. the quantities
(2.6) B, = > uwor, o= Ee,

k=1

(27) Ui = maXg—i,..., n uf.k

still depend on <.
We shall use the identity

(2.8) D ek = piPpi = (P,
k=1

where (A);; denotes the (¢, j) element of the matrix A.

3. A necessary and sufficient condition for the consistency of the least squares
estimators. In this section the set F is submitted to the conditions stated in
Section 1 and, moreover, is required to contain at least one normal d.f. N(0, ¢°).
With the notations of Section 2 one then has

TaeoREM 1. The least squares estimatores b, , n = q, ¢ + 1, -+ estimate B
consistently on F if and only if Amin(Pn) — ©, where Anin(P,) is the smallest
characteristic value of P, .

The theorem can be generalized immediately by allowing the d.f. of ¢ to
be any element out of a set F of d.f.’s where in the sequence F,, F,, --- each
F is submitted to the same restrictions as were imposed on F, and where, more-
over, the variances are bounded uniformly in k. The theorem holds also for
convergence in quadratic mean instead of convergence in probability (the latter
defines our consistency concept).

Proor.

(1) Sufficiency: because of E(P~"X’e) = 0 in (2.3) the b, are unbiased. The
variance of each component of the vector P~ X’e tends to zero if and only if
E(€XP?X'e) — 0. Because var ¢ < const (const means whenever it occurs
some finite real constant independent of ¥ and n) the left hand side is

(3.1) O(tr XP*X') = O(tr P™) = O(1/Amin(P)).

Because Amin(P) — o thus b, 4> B on F.
(2) Necessity: choosing all ¢ in (1.1) distributed identically with d.f.
N(0, ¢*) ¢ F one has

(3.2) bin — B: = piX'e ~ N(0, piX'SXp.)
where § is the nth unit matrix multiplied by ¢°. Hence var (bi — 8:;) = o*(P™) i
which, because of the consistency, must tend to zero for every ¢ = 1, -+, q.

Thus Y (P ) = Z, A7 (P) must tend to zero and therefore Amin(P) — .
APPLICATIONS AND REMARKS To THEOREM 1.
(1) Since (P)i; = Amin(P) it follows from Apin(P) — « foreachi =1, --- | ¢

that zix; — ® asn — . One also observes that Ami,(P) is a sequence of posi-
tive numbers, nondecreasing in n.



450 F. EICKER

(2) The following criterion (compare e.g. Bodewig (1959), p. 67) can be
helpful in connection with Theorem 1: for Amin(P) — o it is sufficient that for
i = ]_’ LY y q

q
(3.3) miz: — D |riw] — ®

i=t
T
where the z;, 5 = 1, -+, g, are n vectors, and n — .
(3) Polynomial regression: if

(3°4) xki=kw’ ci>_%’ 7:=1>""Q> k=1’2""’
and ¢; # ¢;, then
(3.5) Amin(Pn) = O(n*™), ¢ = min ¢

T=1,00" ,q
(for a proof compare [4]). Hence estimators are obtained that are consistent on
F, also for non-integers c¢;, if and only if ¢y > —%. Similarly, regression vectors
may be treated in which exponentials, or exponentials and polynomials occur.
(4) One obtains consistent estimators also in a trigonometric regression. Let

(3.6) Troi1 = COS wk, ~ Xy = sin wik, i=1--,4q

where w; # w; and w; 5% 2 — w; for 7 > 7, and 0 £ w; < 27 for all <. In this
case n'P, tends to a diagonal matrix whose non-zero elements are O(1).

(5) If one is interested only in the consistency of one, say the 7th component
bi of the vector estimators b, then (P™"),; — 0 is a necessary and sufficient
condition for b, — B; on F.

(6) The system (1.1) is a special case of the following general system of linear
regression equations familiar in time series analysis, where regression on lagged
variables is included (autoregressive schemes)

(3.7 Yo = oo + - + Yep + B + - + BeZrg + e,

fork = 1,2, --- . The o’s are constants, the other quantities are as defined in
Sections 1 and 2. The &’s and 8’s can be estimated by means of least squares,
and sufficient conditions for the &’s and the zx; are known which allow for the
consistency of the estimators. Theorem 1 turns out to be a specialization of some
results concerning this general scheme [4].

(7) In Theorem 1 it is assumed that. F contains a normal distribution. This
certainly is not necessary. However, it seems to be more difficult if it is at all
possible to derive “simple” necessary and sufficient conditions for {X,} and F
in order that consistency holds on F. Here “simple” may e.g. mean that the
conditions are separate for the X, and for F (as in Theorems 1 and 2), or at least
less complex than those which can be obtained from general theorems (see
e.g., Gnedenko and Kolmogorov (1954), p. 116).

4. Conditions for the asymptotic normality of the least squares estimators,
Henceforth ¢, and ¢; are assumed to be independent for j # k, and F is some
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non-empty set of d.f.’s with zero means and finite, positive variances. The as-
sumption that the variances are positive does not mean any loss of generality
because if there were an error with vanishing variance there would exist a linear
relation between 8, - - -, 8, holding with probability one, and the system (1.1)
could be reduced so that it contained one 8; less.

The next theorem is an immediate consequence of Theorem 3 published else-
where [3]. In order to apply this theorem we only have to observe that for every
n 2 g there exists a k£ = 1 such that pi(n)r, = 0, given 7 = 1, 7 < q. This
follows from the assumption that the rank of X, is ¢, and therefore pi(n) X, is
not the null vector. With the notations of Sections 1 and 2 we have

TaEOREM 2. For the convergence of the d.f.’s of B, (bin — B:) on a set F, subject
to the above restrictions, to the standard normal law for n — « and in order that
the contribution of every e, be infinitesimal,

maxg—i,...,n |'u.nk| o’kB—l g 0

it is necessary and sufficient that the following conditions on F and the sequence
of regression matrices {X,} be fulfilled:
(I) The rank of X, is q. Furthermore

(4-1) Ufu/(P;l)ii—)O asn — oo,
(I1) (4.2) supaep/; 1 ZdG(z) >0 forc— .
(ITT) (43) inf ger f 2d6(z) > 0.

One notices that it is not sufficient to have instead of (II) the boundedness
from above of the variances of all d.f.’s in F.

The above theorem remains valid if “convergence in distribution on F”’ is
replaced by “convergence in distribution on F uniform on the real axis and on
&(F)”, which can be written, recalling that the quantities B, and b, depend
upon {ex},

(4.4) (e,ges;(p: |P(B. (bin — B:) < ) — é(z)| — 0,
where ¢(z) is the standard normal d.f.

The followmg theorem which instead. of (II) uses the Lyapunov type con-
ditions (II') of the central limit theorem gives only sufficient conditions for
the asymptotic normality of the least squares estimators and can easily be
proved:

CoRrOLLARY TO THEOREM 2. For the convergence of the d.f’s of B (bin — Bi)
on a set F, subject to the above restrictions, to the standard normal law for n — o
1t 1s sufficient that Conditions (I) and (III) of Theorem 2 hold and that for some
7>0

ar’) (45) SUDacr f l2"*" dG(2) < const.
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Proor. We only need to show that (II) follows from (IT'): for ¢ > 0 and
with a constant independent of G ¢ F

(46) f ZdG(z) £ f 2 |2/c|"dG(z) < constc™”
|zl ze |zl ze

which tends to zero for ¢ — .

6. An asymptotically normal statistic for the regression parameters. Theorem 2
makes a statement about the quantities B, (b — 8:). Here B, is a function
of the variances o} of the errors ¢, . In many cases, however, the o, are unknown.
One then can replace B, by the estimate C, appearmg in the next theorem.

TaEOREM 3. Let

(5.1) ch = Z Unieh

where e, is the kth component of e = y — Xb. Then 1t is sufficient for C, C (bin — Bs),
i =1,---,q, to have asymptotically the standard normal distribution on F that
besides Condition (1) of Theorem 2 the following conditions hold

(5.2) ming,r f ZdG(z) >0,  supger f 2 dG(z) < .
Proor. It suffices to show that (C,/B,)® tends to one in probability (Cramér

(1946), p. 254), or equivalently C./B, — 1 ip., C» = |Cu|. With 8 — b =
—P7'X’e we have for any n = q

(5.3) e=y— Xb=e— XP X
hence e, = & — v,ﬁe, where
(54) w = XP'n, k=1,---,n

As the ¢; are independent, and because of (5.2) and vvs = v, all k, we obtain

(5.5) E(vie)® < const vgv, = const v ,
n 4
(56) E(re)=E (Z Vkj €j) < const (Z Ve + 3 Z vij,vi,,.) < const vi;,
Jj=1 J j];rnn
all constants independent of n and k. Now

E(el) = E(ep) + E(v;ie)2 - 2E’(ekvzie)

(5.7) . . .
< o1 + const vy, — 2010 = ok + const v,

observing v = P 'r, = 0. Because of the identity

(5.8) S viv, = Z Vip = Z mP 7l =tr XP'X =g,
k=1
(5.9) E(C%) < B + const U, ; U = max, bk .

From (2.8) and (5.2) there follows B> > const (P™");;. Hence by (4.1),
B'E(CY) — 1.
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The variance is, using Minkovski’s inequality for three summands,
var(B,’C) < Bi' E(C, — Bo)’
= B'E [kZ: uni(er — or + (i )* — 26 vzie):r
< BIE(E wialet — o)}

+ {E(; war(vr €)®)°}) + 2 {E(Zk uby & v €)1

(5.10)

The squared first term in the square bracket is bounded by

(5.11) const Uf,; us, = const UL(P V) u

and tends to zero after division by Bj which is > const{(P_l)ﬁV. By the
Schwarz inequality and by (5.6), for all £ and m

(5.12) E[(vre)*(vme)?] < const vetmm -

Thus the squared second term is bounded by

(5.13) const Y Uikt mVmm < const Up
kym

and tends to zero if multiplied by B,'. Finally, with vgm = rmP 1k = O,
Ve < VikVrmm 5

const (Vix Vmm + bl?:m) < const Vi, Vmm , k= m

(5.14) E(e v;ie €m v,',. e) <
const vy , = m.

By (5.8) the squared third term in (5.10) multiplied by B," is now seen to be
O(UA{(P™):}% and thus tends to zero.

6. Remarks and examples.

(1) Condition (I) of Theorem 2 is equivalent with .
(6.1) (Pl piX — (0), asn — w,
where (0) is the zero vector. If in (6.1) only the first ¢ components are con-
sidered, which amounts to replacing the X that appears explicitly in (6.1) by

X, , and recalling that X, is nonsingular, we obtain [(P™") “-]_*p,« — 0 or, taking-
the jth component,

(62) (PH3/(P ™ — 0, j=1---,q
Taking in particular j = 7, (6.2) reduces to
(6.3) (P™)u—0,

and one notices that (6.3) is the assumption made in Theorem 1 (see Remark
5). Thus the asymptotic normality of B,'(b.; — B:) on F implies the con-
sistency of by, on F. Without applying Theorem 1 this conclusion may also be
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drawn simply from the fact that B < const (P™)y; tends to zero.
(2) Condition (I) is implied by

(I’) [(P_Z) ii/(P_l) ﬁ] MaXp=1,...,n 7‘1:7‘/: -0 forn — o

as can be seen with the help of the inequalities Amex(ppi) =< pipi = (P ).
With Amex(4) = (A)is = Amin(4) for every real symmetric matrix 4 and for
all possible z, and denoting by X;(P) the jth largest characteristic root of P,
Condition (I') is seen in turn to be implied by

(1) M(P) /AS(P)] M8Xpmr, ... n 7 — O forn — .

(3) Theorem 2 asserts the asymptotic normality of the single components of
the vector estimators b, of 8. For the vectors b, themselves, however, it seems
not to be possible to state similarly a theorem concerning the asymptotic con-
vergence on F to a joint d.f. if the set F contains at least two distributions with
different variances.

This shall be demonstrated by the following example where F is taken to
consist of the two normal d.f.’s N(0, 1) and N(0, 2) and where the regression
and error vectors are chosen in such a way, that the covariance between the
two components of the vector estimate b, does not exist asymptotically. Then
also a joint asymptotic d.f. does not exist although the assumptions of Theorem
2 are satisfied. This is clear for (4.2) and (4.3), and it will be shown for (4.1).

Let ¢ = 2. The covariance between (b, — 81)/B.” and (b, — 8:) /B is
proportional to the (1, 2)-element of the covariance matrix (2.4) and equals

(6.4 X bt/

where BY’ is defined by (2.6) Wlth Une = uSk. The summation runs here and
in the following sums over k¥ = 1, ---, n in case nothlng else is stated. We
choose as regression vectors the n-vectors z; = (I, 1 , 1), x2 =
(1, —=1,1, - -+, £1). Putting ¢, = [1 — (—1)"]/2, we obtain z1z; = ¢, , T121 =
zax2 = m, |Ps| = n* — ¢&, and

T z1 2 1 ¢/

141 —d41 —Cn,

Pl = |P,|” , , =n|P,|™ .
—Z1 T2 Ty Ty —Ca/1 1

Furthermore, with 7 = (1, (—1)**") and recalling P.' = (p1, ps),
ulek) = Tkpl =N |Pn|_l(1 + ( 1) cn/n) ( 1)k+1 (2)
Now max, (un?)®/(P3)u = (1 + c,,/n) 'n/(n® — ¢n) — 0 so that (4.1) is
satisfied. Putting [I + (—1)"c./n]* = du, (6.4) becomes
— 1M G2 (D)2 2 g
(6.5) 2(-1) i _X(-1)
E (u Eak nk

Since ¢,/n — 0, dne — 1 uniformly in k. Thus (6.5) lies in an interval with the

? Some details of the construction of this example are due to Professor R. A. Wijsman.
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endpointg
(1 = ) + (a/n)’] 2 (=D"ai — 2(ea/n) 2 oi}/ 2 ok

where 8 > 0 can be made arbitrarily small for large n. The center of the interval
is, up to terms of order O(c,/n), equal to
[n/2] n

t, = Zl Bj/kzlai, 8; = a§,~—a§,~_l.
i= —

Since of = 1 or 2, i.e. §; = 1 or —1, the sequence {3;} can be chosen so that
{t.} has the cluster points +% and —3§. This can be done by choosing alternately
uninterrupted sequences of +1’s or —1’s for the §,’s whose respective lengths
divided by n tend to one. Consequently, the covariance (6.4) does not converge
asymptotically as was to be shown.

RemARk. If instead of the ordinary least squares estimators the minimum
variance linear estimators

b, = (X'S°X)7'X'S?, 8 = diag (oi, - -, dd),
had been used, the asymptotic normality on a set F with at least two d.f.s having

different variances again could not have been inferred. In this case the covariance
matrix of D(b, — B) equals

(6.6) D(X'SX)7'D = [D7X/S XD

where D* = diag (di(n), - - -, da(n)) is the matrix consisting of the diagonal
of (X'87X)™" and zeros elsewhere. Let (6.6) have a (nonsingular) limiting
matrix for n — . Then the sequence of the inverses also possesses a limiting
matrix, so that the (¢, ¢)-elements of the inverse matrices Y _r; o7 Z5s/ di(n)
converge forz = 1, -+ | gq.

Hence, since the sequence of the (7, j)-elements of the inverse matrices
>k 0% eiti;/di(n) di(n) converges, also

(6.7) Ekj o5 i/ Zk: or s Zk: orki)t

does. However, like above examples can be constructed for which (6.7) does
not converge even if it does for identical ¢’s. To this end choose the z;; as in
the previous example. Then (6.7) is the same as £, in that example, after re-
placing o by o%>. Thus, by choosing o} to be 1 or  according as the previous
o was chosen 1 or 2, we produce the same divergent sequence {t,} as before.

ExampPLES.

(1) If ¢ = 1 then there is only one regression vector, denoted by z. As ¢ as-
sumes only the value one, we have P = (P™")y = p, = 1/2'z, and Condition
(I) reduces to maxy_i,... . |zz|/||lz]l = O, ||zl = (z'z)*, which is equivalent with
the pair of conditions z,,/||z|| — 0 and ||z|| — « for n — . A regression vector
of this kind is called slowly increasing [6].

(2) In the case ¢ = 2 one may put p, = Z12s/||z||- [|zs]|, the “correlation
coefficient”” between the n-vectors z; and z. . Then one easily computes that
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(4.1) is equivalent with
1/ 96{231(1 — pu) ] MAK1, .o (B2 — ank2(~’0{x1/ x;xz)%lz -0
and a similar relation in which the subscripts 1 and 2 are interchanged.
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