ONE DIMENSIONAL RANDOM WALK WITH A PARTIALLY
REFLECTING BARRIER

By G. LEHNER
Laboratorio Gas Ionizzati (EURATOM—C.N.E.N.)

0. Summary. In the present paper we consider the one dimensional random
walk of a particle restricted by a partially reflecting barrier. The reflecting barrier
is described by a coefficient of reflection . The probability of finding a particle
at a lattice point m after N steps is calculated and expressed in terms of hyper-
geometric functions of the Fi-type.

Other theorems are deduced concerning the one dimensional random walk.
Tor instance the number of paths leading from one lattice point to another lattice
point in N steps and showing a given number of reflections at the barrier is
calculated.

1. Introduction. We consider a particle moving on the lattice points of a
straight line. The distances between these points are constant and equal L. In
equally spaced intervals of time the particle moves one step to the right or one
step to the left in a purely statistical manner with probabilities 3. One calls this a
random walk in one dimension [1], [3]. It is a discrete model of diffusion or
Brownian motion, which one can derive from it by certain limiting processes
(1], [4].

In the simplest case the motion of the particle is not restricted by any boundary
conditions and it is easy to calculate the probability P(m, N) of finding the par-
ticle at the lattice point mL after N steps assuming that it was at the origin at
the beginning (see for instance [3]). The result is

N .
= (L)Y —
P(m,N) = (}) ((N—m)/2> if N — m even,
=0 if N — m odd.
If there is a reflecting or absorbing barrier at the lattice point m,L, one can
reduce the problem to Equation (1). One makes use of a reflection principle,
that is the use of the image point of m at the mirror m, ,

(1)

(2) me = 2m1 - m.

Omitting the unit of length one derives the equation

P(m, N; my)
@ -0 [(ow Yo) = (o Swap)] TV = meven
=0 if N — modd
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where the upper sign holds for a reflecting barrier and the lower sign for an

absorbing barrier.
These aré two special cases of the general problem of a partially absorbing

and partially reflecting barrier. This is a problem of practical interest, because
plasmas and gases are often confined by such barriers. This generalized problem
will be considered in the present paper.

The barrier is described by a coefficient of reflection r, which is the probability
that a particle hitting the barrier will be reflected. Then (1 — r) is the nroba-
bility of absorption. Usually one considers that 0 = » < 1, but one can also
consider that » > 1, thinking for example of the production of secondary par-
ticles. In this case one cannot speak of probabilities. One could rather call r
a coefficient of secondary emission and P a particle density. The equations derived
below are not changed by this difference.

We denote by P(m, N; m;, r) the probability of a particle going from 0 to
m in N steps in the presence of a partially reflecting barrier () at m; . The next
three subsections will be devoted to the calculation of this quantity.

2. Procedure for the calculation of P. We start by considering the number of
‘paths leading from 0 to m in N steps with n reflections at m; . This number we de-
note by Z,(m, N; m;). The maximum number of reflections is

(N+m)/2—m + 1= (N—m)/2+ 1.
Abbreviating
(4) (N—mp)/2 =y
we have

y+1

P(m, N;my,r)= Zo (M)Y"Z.(N, m; my)r"

(%) ) g+l
= (%)”;) Zn- (28)™

It is useful to apply again the above mentioned reflection principle (see Equa-
tion (2)). Defining & new function Y,(mz, N; m;) which is the number of paths
leading from 0 to m, in N steps touching or crossing 7, n times. For n = 1,
Z, may be related to Y, : ’

(6) 2" Z,(m, N;my) = Y,(ms, N; my), me = 2m; — m

while forn = 0

(7) Zo(m, N5 m) = ((N hf m)/2> - (Z)
so that from (5)

Pon v ) = 0 [ (o 2y ) - ™

(8) y+1
+ 2 Zl Y,(ms, N; ml)r"] .



ONE DIMENSIONAL RANDOM WALK 407

In the two following sections we will calculate the numbers Z, and Y, and
evaluate the sum in Equation (8).

3. Calculation of Z, and Y, . We start from two theorems concerning the one-
dimensional random walk, which are derived in reference [3] (Theorems 2 and
3, pages 76, 77). Here notations will be slightly changed.

(a) The number of paths leading from 0 to m such that m is reached for the
first time at the Nth step is

/v = (m/N) <(N +Nm)/2) if N+ mevenand N = m

=0 if either N + m odd or N < m.

(9)

(b) The number of paths starting from 0, which after N steps return to
0 for the nth time is

gy = 2"[n/(N — n)] (NN7217,) = 2"fN-n if N even

=0 if N odd.

(10)

Asfy form = 0and N = 0, and gy for n = 0, N = 0 are not yet defined by
Equations (9) and (10) we complete these equations by setting

(11) I = 8w, gv = dow.

With the help of Equations (9) and (10) we can write
N—_mg+m, N—mo+m;

(12)  Y.(ms, N;my) = lz > ey ™M, 1sn=<y+1.
1

2k k=m

The contributions do not vanish only if N + m, m; + k and m; — 1 all are
even. We can fulfill the last two conditions by the introduction of new indices of
summation, 2k’ = k — my, 21' = | — m, . Writing again k, ! instead of k', I’
and using Equations (4) and (10) we derive from Equation (12)

Y Y
(13) Yo(me, N;mi) = D, kgf$;+2kf$‘~;?—2zﬂ(_zlk)—n+12"—1

Ik k=

Let us consider Y, first. From Equation (11) it follows that
’ Y
(14) Yi(my,N;my) = I;ﬂiwkf:n"::mmhzy-zk .

It is possible to show that Y; is independent of m; if m. is fixed. So we can sum
(14) using any m; we like, for instance m; = 0. Using Equation (11) we thus get

(15) Yy = fusta -



408 G. LEHNER

We may reach the same result by using the relation

Y
(16) 1;0 Sasarfora—s = fatbiz
which can be verified by induction with respect to b.
By applying Equation (16) twice one can evaluate the double sum (13) to get
Yo = 2" ottty an

mo+n—1
f mo+2y—n+1

(17)

Before proceeding we shall discuss some relations between these numbers.
The number of all paths from 0 to m, is according to Equation (1)

((N —nm»/z) N (2;/ :—r Z‘)

Therefore,

(RS, n—1pmo+n—1 2?/ + mg
(18) Z Y, = Z 2 ﬂ”n§+2y—n+1 =

n=1 n=1 + Ma

which can also be proved by induction agam Writing (18) in a different way we
have the interesting relation

L b
(19) Y= ((b + a)/2>'
Furthermore it is interesting to observe that the Z, fulfill the difference equa-
tion
(20) Za(yy me) — Znya(y, ma) = Zna(y — 1, ma).

This gives a scheme for a step-by-step calculation of Z.(y,mz) in terms of
Zi(y, mz). Zn = O forn > y + 1 and Z,41 = 1, so that we have the following
table:

Yy
n 0 1 2 3
1 1 My (m3 + 3my) /2
2 0 1 1+ my (ms + 5may + 4)/2
3 0 0 1 2 4+ my
4 0 0 0 1

Another consequence of Equation (20) is

(21) Zo(yyms) = > Zu(y — 1, ma).

k=n—1
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We can rewrite this equation in a form similar to Equation (19), namely,
(b=a)/2
(22) > st =it
k=0

This again can be directly provided by induction.

To conclude this section we can formulate the following theorems:

(a) The number of paths from 0 to m in N steps showing n reflections at
my (my = m,n = 1) is given by

(23) Z,(m, N;my) = fat bt

(b) The number of paths from 0 to m, in N steps crossing or touching » times
my (0 = my < my,n = 1) is given by

(24) Ya(ma, N) = fy=iia’
(¢) The number of paths from 0 to m in NV steps never crossing m; but showing

at least one reflection at m; is given by

yt1
(25) }:1 Z,(m, N;my) = fau ™,
n=

This is proved with the help of Equation (22). Equations (16), (19) and (22)
are important relations between the f’s completing these theorems.

Many well-known theorems are special cases of Equations (23), (24), (25)
(see for instance [3]).

4. The summation of all the contributions. With k¥ = n — 1 we find that
corresponding to Equations (8) and (17)

P(m,N;my,r) = (H) [((N _Nm)/2> - <(N —Nmz)/.?)

( 26 ) u
+ 2r ;;0 f::.gi’;yauzr)’“’]

where from Equation (9)

ok m+k (me + 2y — k)!
T my £ 2y — b (ma 4 )y — k)!
Three special cases can be treated immediately. For r = 0 and » = 1 we get

the result mentioned in Equation (3), where in the case r = 1 we have to apply
Equation (19). Applying Equation (22) we can treat the case » = } and find

(28) P(m,N;m, 3) = (3)" [((N _Nm)/2> B ([N - (nZ-I- 2)]/2>:|'

We see that a barrier with » = 1 at m; has the same effect as a barrier with r = 0
at m; + 1, which is easy to understand.

(27)
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In general one gets hypergeometric functions of the type o/, . I'or the relations
among the oF"; we refer to [2]. Applying the definition of ., by a series we find for
the sum in Equation (26)

me+k  (me+ 2y — k)! &
Hmtoy—k mtoiw=n 2
my = (ma 42y — k —1)1 k! (20)"
(m2 + ylizo (y — k)! k!
2r (me+ 2y — k — 1)1 k! (2r)*
(29) (mz Folden (E W= Bl )

2
d
+ zrmm’l(l, —y;—me — 2y + 1; 27‘)]
where for the derivative
(30) %[zﬁ'l(l, b;c;2)] = 15’21”1(2, b+ 1e+ 1;2).

By virtue of the relations among the so called “contiguous hypergeometric func-
tions” and since

(31) o1(0,D;¢52) =1
one can express o/1(2, b + 1;¢ + 1;2) in terms of »F1(1, b; ¢; 2) finding

(1+bz—c)2F1(1bcz)+c—1
21 — 2)

We see that our hypergeometric function fulfills a differential equation of the
first order, while in general the hypergeometric functions fulfill a second order
equation only,

(32) diz[zm, b; ¢;2)] =

(33) z(l—z)%+[c—-(a+b+1)z]g7u—-abu=0
which has two linearly independent solutions,

(34) ur = 2F1(a, b c; 2)

(35) Up =2 SF(@a—c+1,b—c+1;2 —¢;2).

Now, if one of the two parameters a or b equals 1, for instance if @ = 1, we can
integrate (33), directly

(36) 2(1 —2)(du/de) + (c — 1 —bz)u =K

where K is a constant of integration. Putting K = 0 Equation (36) yields u. .
Putting K = ¢ — 1 it yields %, , which brings us back to Equation (32) again.
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Equations (26), (27), (29) and (32) after again applying the relations among
contiguous hypergeometric functions may be shown to give

POm, Ny, r) = G)N {<<N —A:n)/Q) * ((N+ e 2ml>/2)

(37)
[2(r — 1):F1(1, — (N 4+ m — 2m;)/2; — N;2r) + 1]}.

This only holds if m < m; . We will come back to the case m = m; in the next

section. Again r = 0 and r = 1 are trivial. To find the previous result for r = 2

anew, one makes use of the relation

Fil, = b — ;1) = 14 04 2= 1)
c clc—1)

cc—1) - (c—b+1) 14+c—0b

which holds if ¥ < ¢ and which can be proved by induction.
If 7 is very small we have to the first order, that is if we consider only paths
showing not more than one reflection,

P(m,N;my,r) = G)N [((N —A:n')/2>

— ((N + mAi 2m1)/2> [1— (2m; — m)2r/N]:|,

If on the other hand r is very large we use only the highest order term in 7,
that is the last term of the finite series for o/ ,

(39) P(m, N; m, ,,,) — (%)(N+2m1—m—2)/2 T(N—2m1+m+2)/2 - (%)N—y—l Tu+l

which is obvious because the maximum number of reflections is y + 1.

(38)

6. Absorption. We now calculate the probability that a particle reaches the
barrier at m; at its Nth step and is absorbed. First let us consider the probability
that the particle reaches the barrier at the Nth step,

Q(my,N;my,r) = 3 P(miy — 1I,N — 1;my,7)

(40) = (%)N<(N —]\:711)/2>

14 (@ =1) (1, — (N — my)/2; — N; 2r))/r

which differs from the value P(m;, N; m; , r) according to Equation (37) by a
factor (1/2r). The probability for absorption consequently is

1\¥ N
(41) Alms, Nyr) = (1= 1) <§> <(N - 1711)/2)
qL 4 (r = 1)2F1 (1, — (N — m)/2; — N; 27)]/7.
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If r is very small this yields

(42) Almi,N;7) = (%)N <( N /2> s/ N

hecause
o1 (1, —(N —my)/2; —N;2r) =1+ (N —m)r/N + ---.

6. Conclusion. In this paper it has been shown that one can calculaie the
random walk of a particle restricted by one partially reflecting barrier using
combinatorial methods. An attempt has been made to solve the problem of a
particle between two partially reflecting barriers using the methods of the present
paper and the methods developed by Kac [4] based on the diagonalization of
the stochastic matrix of the Markov chain equivalent to the random walk. To
date these have not produced any positive results.
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