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0. Summary. A procedure for adjusting the treatment design matrix to
furnish estimates as orthogonal linear functions of stochastic variates has been
given for fractional replicates of factorial experiments composed of ks~ ™s"
treatments for m < n, for s a prime number, and k not a multiple of s. These
are irregular fractional replicates. Ordinarily irregular fractional replicates do
not lead to estimates of effects which are orthogonal linear combinations of the
observations. In this paper a new relationship and some generalizations on the
theory of irregular fractional replicates of complete factorials have been de-
veloped. En route to these developments two theorems in matrix transforma-
tions were proved. In addition, the relationship between the method utilized
here and ordinary missing plot techniques is pointed out.

1. Introduction. Regular fractional replicates are those obtained by completely
confounding one or more effects with the mean resulting in an s~ fraction of an
s" complete factorial for s a prime number, and for m < n. These designs and
their properties have been discussed at length by Finney [12], Kempthorne
[15], Daniel [6], [7], Rao [18], and others (for e.g. see references in [7]).

Irregular fractional replicates, then, are those which are not regular as defined
above, and are of various types. For example, one type of an irregular fractional
replicate is the fraction of ks~ ™ of an s” complete factorial where k is not a mul-
tiple of s. The method of construction for this type of irregular fractional repli-
cate was presented by Banerjee [3] together with a worked numerical example
of a £ replicate of a 2° factorial. The possibility of using a £ replicate of a com-
plete factorial was suggested also by Kempthorne [16], and Davies and Hay
[8]. After a decade, additional papers have appeared on % replicates [14] and
on ks™™ fractions of an s" factorial [1]. Another type of irregular fractional
replicate of a complete factorial is obtained by taking an s ™ fraction of an s"
factorial such that some effects are partially confounded with the mean while
others are either completely confounded or completely unconfounded with the
mean [5], [9], [11]. Many other types of fractionally replicated factorial experi-
ments may be obtained by adding fractional replicates together. For example,
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add fractions ks™™, s, s, etc. together to form the desired combinations of a
factorial experiment. Using this procedure response surface designs, diallel
crossing systems, proportional factorials, etc. may easily be generated.

Irregular fractions may be selected in such a way that nq main effect or interac-
tion need be completely confounded with the mean [1]. Although such designs
lead to correlated estimates, (e.g. see [1], [3], and [14]), it will be shown in this
paper how to adjust the treatment design matrix to obtain an orthogonal form
for the estimates, thereby facilitating the computations. In addition, some
generalizations of the theory on irregular fractional replicates, a new relation-
ship between an irregular fractional replicate and the full replicate and a measure
of efficiency of a design are presented. Two theorems in matrix transformations
used for the above results are given together with their proofs. The relationship
between the method presented here and ordinary missing plot techniques is
pointed out.

2. Two useful theorems. Let Y represent a column vector of n stochastic
variates, 1, ¥2, *** , Yn , let B represent a column vector of p unknown parame-
ters, by, by, -+, by, and let the known treatment design matrix X be composed
of n rows and p columns. Then, the observational equations may be represented
as

(1) Y=XB+e,

where ¢ is an n X 1 column vector of error components, e, ez, - -+, €., and
where E(Y) = XB. If n = p, the least squares estimates of B are given by
B* = [X'X]7'X’Y as in ordinary regression theory.

Now let p = n, let the treatment design matrix be a p X p square matrix
and let this square matrix of rank p be augmented so as to contain m additional
rows with p columns in each and these additional rows are set up corresponding
to m additional stochastic variates y1, ¥s, -+ , ¥m. Denote the additional part
of the treatment design matrix as X, = \'X, the augmented matrix as X,
the additional stochastic variates as Y., and the augmented stochastic variate
matrix as Y. Now X will have p + m rows and p columns, and Y, will be a
(p + m) X 1 column vector. Let the rows of X be denoted by o1, a2, -+, ap
and those of X; by a1, a2, - ap, B1, B2, - -+ Bn . The least squares estimates
corresponding to the ohgervational equations, Y; = X;B; + e; will be given by
[X1X.]'X1Y, = BY, say.

THEOREM 1. If B = D Puy Napas and yp = D Fm1 Ny, Wherek = 1,2, -+, m
and where Mz are scalars, then BY = BY.

Proor. Let A be a p-row by m-column matrix with elements A such that the
augmented treatment design X; and the corresponding stochastic vector Y,
take the form X; = [X : X, = [X :N'X] and ¥V, = [V : V.. = [V : A'Y].
The normal equations [X1X;]Bf = X1¥; may be written as:

[X'X + X'WXIBY = [X': VXY : NY) = XY 4+ X'\N'Y]
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or as [X'[T + MX]Bf = [X'[I + A\']Y]. In the above, X is square and non-
singular. Also, [ + A\'] is a square matrix and not equal to zero if solutions
exist. Therefore, premultiplying both sides by [X'T™, [I + AT, and X’ in that
order, we obtain X'XBf = X'Y. Hence, Bf = B*.

LemMA. For the augmented design matriz X, and for the observational equations
Y, = XiB:1 + e, the residual sum of squares is zero.

The residual sum of squares is given by

@) Y1Y: — B’ X1Y;
which reduces to
Y'Y + YWY] — BY[X' i XA\J[Y : YY)
or to
Y'Y — BYX'Y] + [Y\W\'Y — BYX'\WY] = [Y'Y — BYX'Y]

+ [YNY — [XTVIXNTY] = 0+ [YWY — YWY =0
since the residual sum of squares for the observational equations (1) is zero when
X is a p X p square matrix. The introduction of the new variates, Y, Yo, e,
Y does not alter the residual sum of squares.

Let the square matrix X of rank p be transformed to X, in such a manner
that the rows of X, are dependent on the rows of X such that the vector space
generated by the row vectors of X, is the same as that generated by the row
vectors of X. Then both X and X, have the same rank p. X, may be written as
FX = X,, where F is a square matrix obtained by premultiplication of ele-
meéntary matrices required to transform X to X, and involving only addition or

subtraction of rows.
TuEOREM 2. If the treatment design matriz X and the stochastic vector Y are

transformed to X, and Y, , respectively, in such a manner that X; = FX and Y, =
FY, where these matrices are as defined above, then the least squares estimates By
from the observational equations Y2 = X,B; + e will be the same as B* from the
observational equations Y = XB + e.

"Proor. We have X;X,Bf = X:;Y,, and premultiplying both sides by

(X [Xa™

we obtain:
Bf = [X, [ X: ' XaY, = [Xo] 'Y, = XT'FFY = XY

But, this is equal to B* and hence Bf = B™. Likewise, it can be shown that the
residual sum of squares is zero for this case.

3. Formation of irregular fractional plans. It is well known that the total
number of treatments or combinations s” of n factors at s levels may be denoted
by points of an n-dimensional lattice with » axes as 21, 2z, - -+ , Z» , where each
axis will have s points given by the elements of the Galois Field GF(s). For the
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nfactors A, B, C, - - - , T, the notation ABC --- T, for the n-factor interaction,
will be used to denote the set of treatments for which z; + z2 + -+ + 2, =
7 (mod s). For s = 2, the treatments in a level of a main effect would be de-
noted as 4, and A4, , say, and A would represent the main effect; the treatments
in a level of a two-factor interaction would be A By and AB; , say, and AB would
represent the two-factor interaction; ete.

A fractional replicate of a complete factorial may be formed by taking only
those treatments corresponding to a given level of one or more main effects
and/or interactions. For example, the eight one-eighth replicates of a 2° fac-
torial are, for I7 (f = 1, 2, - - - , 8) denoting the identifying contrast and for the
equals sign associated with I} meaning “completely confounded with” (using

textbook notation, e.g., see [10], [17]):

Treatment
I = A4y =By = ABy = Co = ACy = BCy, = ABC 000 = (1)
I =A1=Bo=AB1=Co=A01=BCo=ABol 100 = a
I =Ao=Bl=ABl=Co=ACo=BCl=AB01 00=b
I =A1=B1=ABO=Co=ACl=B01=ABCo 110=ab
I*=Ao=Bo=ABo=Cl=A01=B01=ABcl 001 =¢
If = Ay =By = AB, = C; = ACy = BC, = AB(, 101 = ac
I;k = Ao = Bl = ABl = Cl = ACl = BCo = ABCo 01]. = bc
I§ = Ay = Bi = ABy = C1 = ACy = BCy = ABC, 111 = abe

where the letter and number notation in the last column is that used by Fisher
[13] and Yates [20]. Utilizing this notation certain simplifying algebraic rela-
tionships are possible among treatments and effects in factorial experiments;
this relationship will be illustrated in the examples below.

Likewise, a set of four one-quarter replicates of a 2° factorial would be:

Treatments

If = Ao = BCy = ABC, 000 4+ 011 = (1) + bec
If = Ay = BC, = ABC, 0104+ 001 =b + ¢

If = A, = BCy = ABC, 100 + 111 = a + abe
If = A, = BC, = ABG, 110 + 101 = ab + ac

The two half replicates for which ABC is completely confounded with the
mean are

Treatments

1) 4+ ab + ac+ be

If = ABC, 000 + 110 + 101 + o11
‘a+b+c+abc

I3 = ABC, 100 + 010 + 001 + 111

The fact that half replicates could also be formed by adding appropriate
quarter replicates or one-eighth replicates was utilized by  Banerjee [3] and
others [1], [7], [14] to form irregular fractional plans with ks™™ treatments.
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Thus, a § or, a § replicate of a 2° may be formed by adding any 5 or any 7 one-
eighth replicates. Likewise, a § replicate may be obtained by adding any 3
quarter replicate plans. Doing this it will be noted that no main effect or interac-
tion need be completely confounded with the mean. This fact was proved by
Addelman [1] for k¥ = m 4 1. He did not state, however, if this holds for any
k of the fractions, nor did he state whether there is a value of k for which this
theorem will hold for all ks™™ fractions. In the eight one-eighth replicates Addel-
man’s [1] theorem indicates that £ = 3 4+ 1 = 4 in order that no main effect
or interaction be completely confounded with the mean, but it is obvious that not
any four will do. The four will need to be taken in such a way that three one-
eighth replicates come from the first four one-eighth replicates listed above and
the fourth from the last four one-eighth replicates, or vice versa. Also, it is clear
that any five of the eight will meet this requirement.

4. Estimates from irregular fractional plans. Expression of the yields as linear
functions of the main effects and interactions in matrix notation is Y = XB + e,
where Y is the column vector of the yields, X the treatment design matrix, B
the column vector for the mean, the main effects and interactions, and e the
error vector. It has to be remembered, however, that in the column vector, B,
the coefficient of the mean is 1, whereas those of the main effects and interactions
are =1, for the 2" factorial.

When the treatment design matrix X corresponds to the full replicate or to a
regular fraction of a 2” factorial experiment, the information matrix, [X'X],
and its inverse, [X'X] ™", reduce to diagonal forms. But when the desagn matrix
corresponds to an irregular fractional plan, the information matrix ceases to be
diagonal, and, in such a situation, the linear functions of the y1e1ds estlmatmg
the effects cease to be orthogonal. Let B = LY, where L = [X'X]"X’. In order
that the estimates B* be available in orthogonal linear functions of the yields,
we should have

= [X'X7'XNX'X]7'X) = XXX’ XXX = (XX

reduced to a diagonal form. The constitution of [X'X]™ will, therefore, reveal
whether the linear functions, LY, will be orthogonal, or not.

Addelman [1] illustrated the use of a ¢ replicate of a 2*-experiment by taking
an aggregate of three quarter replicates as given by:

Fractional replicates

Identity relationship

1 2 3
ABC 0 0 1
ABD 0 1 0
CD 0 1 1

In this case, the information matrix comes out in the following form:
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[P] 0] 12 —4 -
(3) [X'X] = [P] (P] ,  where [P]=[—4 12 —4].
—4 —4 12
] [P]J
The inverse matrix will be obtained as
[Q] 0 4 2 9
4) [X'x1* = [Q] ] , where [Q] = %2—[2 4 2:|.
0 [Q] 2 2 4

The constitution of the above matrix will be clear when it is recalled that the
12 effects of the 2 replicate of a 2* experiment may be divided into four groups of
three each, and that the three in a group will be correlated among themselves,
but will be orthogonal to the rest in the other groups. The effects may be esti-
mated as Bt = [X'X]™ XY, which, in this case, will not be available as orthog-
onal linear functions of Y, as [X'X] ™" is'not of the diagonal form. The variance
and the covariance factors for the estimates will be obtained from the diagonal
and off-diagonal elements of [X’X]™. For example, the variance of each of the
estimates comes out to be ¢°/2, whereas the covariance between any two in a
group of three is o*/4.

b. Estimates as orthogonal linear functions. The form of the matrix given
by Equation (4) indicates that the estimates of the effects within a group are
correlated. The treatment design matrix may, however, be reoriented in the
form of either Theorem 1 or 2 to furnish orthogonal linear functions of the yields.
The procedure isillustrated below with three examples. The notation of Theorems
1 and 2 is retained here.

Exampre 1. Consider the % replicate of a 23 factorial obtained by deleting
treatment 111. If one of the effects is set equal to zero, e.g. ABC, then XB™ = ¥
is of the form:

(+ - - + - + +] [ M 1000 = (1)
+ 4+ - = - - 4+ A/2 100 =a
+ - 4+ - - 4 - B/2 010 = b
+ 4+ 4+ 4+ - — —|-|4B2|=|110=2ab
+ - - + 4+ - - c/2 001 = ¢
+ + - - 4+ + - AC/2 101 = ac
'+ - + - 4+ — 4+ [ Bc/2] [O11=k¢te

If X is augmented by \'X where A’ = (+——4—-44), and Y is augmented
by N'Y we obtain X;Bf = ¥, as
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+ - - + - + + M 000
+ + - - — — +| | Ae 100
+ - + - - 4+ - B/2 010
+ + + + — — —|-|4B/2 110
+ - - 4+ + - - c/2 | =] o001
+ + - — 4+ 4+ —| [4cy2 101
+ — 4+ — 4+ — 4+ |LBc/2] 011
+ + + + + + 4+ | 1117 |

Since [X1X,] is a diagonal matrix with 8’s down the diagonal then we may write
Bt as

[ M 7] [+000 + 100 + 010 + 110 4 001 + 101 + 011 + 1117
A/2 —000 + 100 — 010 + 110 — 001 + 101 — 011 + 111F
B/2 | . || —000 — 100 + 010 + 110 — 001 — 101 + 011 + 111%
AB/2 '= 2| +000 — 100 — 010 + 110 + 001 — 101 — 011 + 11t .
C/2 —000 — 100 — 010 — 110 + 001 + 101 + 011 + 111¥
AC/2 +000 — 100 + 010 — 110 — 001 + 101 — 011 + 111*

LBo/z_l | +000 + 100 — 010 — 110 — 001 — 101 + 011 + 111+J

From the preceding equations we note that
11" = M + 4/2 + B/2 + AB/2 + C/2 + AC/2 + BC/2 for ABC = 0.
Summing these effects we note that
1117 = 000 — 100 — 010 4 110 — 001 + 101 + 011
=(@a—1)b+c—1)+ac=Ob—-—1)(a+c—1)+ ac
=(c—1)(a+b—1) + ab.
An easier method for obtaining 1117 is from A'Y = 111*. Since we now have
the value of 1117 the estimates of the effects are obtained in the same manner
as for the complete factorial with 111* substituted for the yield of 111. The
analogy here with missing plot techniques is obvious. It should be noted that
A'X in X, is simply the remaining rows of the treatment design matrix for the
complete factorial and that A is the negative of the remaining columns of the
treatment design matrix for the complete factorial. These relationships hold
for the 2" factorials. (
ExampLe 2. Consider now the ‘4 replicate obtained by adding the following
three quarter replicates together:
If = By = Co = BC,
I;‘=Bo=01=Bol

I§=B1=00=B01
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and augmenting the X matrix by utilizing the remaining rows of the complete
factorial. The following results for [X : A'X]Bf = X,Bf = ¥, :

[+ - - + - +] [ M [000 T
+ + - - - - A/2 100
+ - + - - + B/2 010
+ + 4+ + - -—| |4B/2 110
+ - = 4+ 4+ —|-|c2]|=]om [,
+ + = - 4+ +| L4cy2 101 |,
+ - 4+ - + - o11*
[+ + + + + +] 111t

where

>\,=[—0+0+o]
0—0+0+

and where \'Y results in fhe following values of 011" and 1117:
0117 = 110 4+ 101 — 100 = ab + ac — a
1117 = 010 + 001 — 000 = b + ¢ — (1).

With these “missing plot” solutions substituted for the missing yields, the solu-
tions for the above effects are obtained in an identical manner to that for a com-
plete factorial where BC and ABC are set equal to zero. If any other effects
had been equated to zero then the design matrix X would change but otherwise
the solution goes through as above.

We note that the following transformation could have been used: 7X; = X,
and FY; = Y,, where F is the square matrix used in Theorem 2 and is defined
below:

1 00 00 0 0 0
010000 0 0
001000 0 0
000100 0 0
FX; =70 0 0 0 1 0 0 0
0 00 0 0 1 0 0
0000 00 : 2% 27?
0 00 00 0 :—27% o7
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r—+ _ - + — +
+ + - - - -
+ - + - - +
+ o+ + = -
Xi={+ - - + + —[=X,

+ + - - + +
ot 0 2t o0 2t o
0 -2 0 2 o0 2

and

Y5 = (000 100 010 110 001 101 2123,
where

a = (011" + 111y /2, z= (—o11t + 111%)/2

and 2! = (no. of treatments omitted)?. Alternatively, X, could have been ob-
tained using
N = l:— - + 4+ + -I-]
+ - - + - +1

This A, incidentally, is obtained by taking the negative coefficients from the
deleted columns for the X matrix for the complete factorial. Also, \'Y yields
the values for 21 = 011" + 111 and 2z; = —011" + 111%. It should be noted
here that the rows of X,, and Y, are divided by (no. of treatments omitted)* to
obtain X, and Y., and that the estimates of the parameters in B obtained using
X, X1, or X, are identical.

ExampLE 3. Delete treatments 21 and 22 from a 32 factorial to obtain the
normal equations for a % replicate of a 3 factorial. After augmentation of the X
and Y matrices and setting A B and A ¢Bq equal to zero we obtain:

+ - + - + + =7 [ M7 [oo]
+ — 4+ 0 -2 0 2 Ay 01
+ - + + + - - Ao 02
+ 0 -2 - 0 0 B, 10
+ 0 -2 0 -2 0 0 B | |11
+ 0 -2 4+ 4+ 0 0 | [AsB.| |12 |’
+ + 4+ - + — + | [4:Bo] |20
+ + + -2 0 -2 21*
L+ + + 4+ + + 4+ [ 227 |

where
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and where the divisors of the effects are omitted. In the above, A'X is the same
as the last two columns of the matrix of coefficients on page 196 of [10], after
adding in a set of pluses for the effect M ; A’ is equal to the coefficients for

(AqBq — AqBL)/2

and —A (B in the first seven columns of the matrix.

If, on the other hand, A was obtained from the last two columns and first
seven rows of the matrix on page 196 of [10] (after adding in a set of pluses for
the first row), this would change the augmented part, X,., of the matrix X, .
Either procedure leads to the same estimates for the effects, which are:

- M 4 0 00 0 0 O
Ay 0 6 00 0 0 O
Aq 0 02 0000
B, |=4]|0 0 0 6 0 0 O
B, 00 0 0 2 0 0
A, B, 000 00 9 O
| 4, B, (000000 3
4+00 401 402 +10 411 - 412 420 421t  422t7
—00 —01 —02 420 421t 422t |
00 +01 402 —2(10 411 +12) +20 <217 4227
—00 402 —10 +12  —20 422 |,
00 —2(01) +02 +10 —2(11) +12 420 —2(21%) +22*
00 —02 —20 +22*
| —00 +2(01) —02 +20 —2(21%) +22*

where the “missing plot” solutions 21* and 227 are obtained from \'Y as
21" = 00 — 01 — 2(10) + 2(11) + 20

and
227 = 00 — 02 — 2(10) + 2(12) + 20.

Following the procedure for Example 3, we note that estimates of the effects
for a fractional replicate of a p X ¢ X k X - -- factorial, for p, ¢, k, - - - any
integer, may be obtained as orthogonal linear combinations of the observations
in a straightforward manner.

6. A measure of efficiency. Since a ks™™ fraction of an s" complete factorial
may be chosen in several ways, a measure of efficiency of alternative schemes
is desirable. To do this we shall use the relative efficiency to two designs as
implied by Wald [19] and used by Banerjee [4] for weighing designs. Doing this
we denote the relative efficiency of two designs for fractional replicates as the pth
root of the two determinants: det [X’X] for design 1/det [X’X] for design 2.
The efficiency factor for a prescribed fractional replicate may be taken as the
pth root of the ratio of the determinant [X’X] for the design and the maximum
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value of the determinant of [X’X] over the set of possible fractional replicates
of which the prescribed fractional replicate is a member.
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