ESTIMATING ORDERED PROBABILITIES!
By Mogrris W. Katz

University of Wisconsin-Milwaukee

1. Summary. Let X;, Y;7 = 1, 2, - -- n be mutually independent binomial
random variables with P{X; = 1} = p1, P{Y; = 1} = p.. Let X, =
(1/n) >ty X;and ¥, = (1/n) 271 Y:. We wish to estimate the parameter
p = (p1, p2). If the parameter spaceis 2 = {p|0 < p1 = 1,0 < p, = 1} then
the usual non-sequential estimator 6 = (81, 6) is of the form (f(X,)), f(¥,)),
that is, if no restriction is placed on the parameters, the estimator for the paired
parameters is the pair of estimators for each parameter separately. In this paper,
however, we are concerned with the parameterspace @ = {p |0 < p1 < p2 < 1}.
We show that estimators constructed as before are no longer admissible with
respect to a class of reasonable loss functions. Square error loss is included in this
class. In particular, we show that for such loss functions, estimators not ordered
in the same way as the parameters are inadmissible. A class of estimators which
retains the same ordering as the parameters, that is with 8, = 8, , is investigated
and the asymptotic behavior of the minimax member is described. Finally, an
asymptotic estimator based on a normal approximation is given. This estimator
is minimax and admissible.

The problem of estimating ordered probabilities arises in estimating a section
of an unknown distribution function.

2. Ordering requirement. Let X,;, Y,;,7 = 1,2, --- n, p and & be as above,
and let the parameter space be @ = {p |0 < p1 = p: = 1}.
We note a well-known property of any strictly convex function ¢:

(1) #(s) + ¢(t) > o(s + u) + ¢(t — u)
where ¢ — s > u > 0. We use this property in the alternate form:
(2) #(a) + ¢(b) < ¢(a + u) + ¢(b — u)

where a — b+‘2u >u>0.
TuroREM 1. Let § = (81, 82) be anestimator of p = (p1, p2) whereQ = {p |0 =
P1 = p2 = 1}. Let the loss function be of the form

(3) ¢(|61 — p1|) + ¢(|62 — p2f)
where ¢ is a convex, even, positive function. Then if P,{d, > 8} > 0, 6 is inad-
missible.

Proor. Define a new estimator 8" = (87 , 87) by

87 = min{é;, by + (1 — )b}, 617 = max{d, (1 — a)és + abs),
where 0 = a = 1.
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‘We show
(4) (87 — 1) + 6(65 — p2) < #(81 — p1) + (82 — p2)

whenever 8; > §:. For §; =< 6, equality holds in (4). Suppose 6; > 6.. Let a =
o —P1,b=08 —po,u= (61— 8)(1 —a);thena +u =8, — p1,b —u =
82 — p2, and (4) reduces to ¢(a) + ¢(b) < ¢(a + u) + ¢(b — u). We need
only show that @ — b + 2u > » > 0 and this is identical to (2). This is easily
verified and the theorem is proved.

Note that since 85 — 67 = (81 — &)(1 — 2a), we require that « < % for
81 > 8, otherwise 8" is inadmissible by the theorem.

Theorem 1 states that for loss functions of the form (3), estimators not ordered
in the same way as the parameters are inadmissible. The theorem is not neces-
sarily true for other loss functions, as we now show. Let » = 1, then
8; = 8;(X1, Y1) ¢ = 1, 2. Consider the loss function W,

W (s, p) = [61 — pil'pT + [6: — pal.

W is convex in & = (8;, 8;). We show that there is an admissible estimator §
with the property

() 8(1,0) = (m + 2)/(m +5), 5(1,0) =%

so that for m > 2.5, 6:(1, 0) > 8:(1, 0).

Let \ be an a priori distribution uniform over @ = {p |0 < p1 < p2 = 1}.
If 6 is Bayes relative to A\, then we show that 6 satisfies (5). For each estimator
the risk is continuous on 2, and N puts positive probability on each open subset
of Q. Hence the Bayes estimator relative to \ is admissible. Let

o) = [ [ 16 = 2t + (s = ) ImulL — p2) ds .

We wish to find the pair (r, ) minimizing p. This minimizing pair will be the
Bayes estimate at (1, 0). We have p(r, s) = 1*/(m + 2)(m + 3)(m + 4) —
2r/(m + 3)(m + 4)(m + 5) + s°/24 — s/20 + constant. This expression is
minimized when r = (m + 2)/(m + 5), s = £. Thus it is sometimes possible
to get admissible estimators such that P,{6; > 82} > 0 if the loss is not of form
(3).

3. Mixed estimators. We say that & = (81, &) is a mized estimator of
P = (p1,p) where@ = {p |0 = p1 = p> = 1} if

8= (nXn+ (1 — an)¥s, (1 — an)Xn + aa¥s)
where a, is a random variable, a, = 1if X, — ¥, < 0, @y = o otherwise.
Following the remark after Theorem 1, we take 0 < af =< %, so that

P,{é, > 32} = 0.
THEOREM 2. Mized estimalors are invariant under a transformation that inter-

changes the outcomes, 0 and 1, of every binomial trial.
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Proo¥. Let gbe a transformation on the sample space &, such that g(X,, ¥,) =
(1 — ¥Y,,1 — X,). The transformation g’ induced on the parameter space is
given by ¢'(p1, p2) = (1 — p2, 1 — p1), and g” transforms the estimators
9”(81,8) = (1 — 8,1 — 31). Then for & = (31, 82) to be invariant we require
g"(86(Xa, Y,)) = 8[g(Xa, Ya)lor 8:(Xn, Ya) + 62(1 — Yy, 1 — X,,) = 1.
This is obviously so for mixed estimators and the theorem is proved.

From now on we take as loss function, the square error loss,

W, p) = (81— p1)* + (8 — p2)™.

We wish to find the minimax mixed estimator, i.e., the minimax value of « .
For simplicity we write o, a*, X, ¥ for an, af , X., Y. respectively. Denote
the risk by ps(p1, pz ; ) where § is a mixed estimator. With a little compu-
tation we have p(p1, P2; @) = [p(l — p) + p(l — p)l/m —
2E{a(l — a)(Y — X)% + 2(p: — p1)E{(1 — «)(¥Y — X)}. Now it is easy to
verify that ps(p1, p2; @) = ps(1 — p2, 1 — p1; o), ie., the risk is sym-
metric about the line p; + p» = 1. Consider any line p. — p1 = wfor0 <« < 1.
Let p1 = p and p. = p + . Then the risk can be written ps(p, p + =; at) =
[p(1 — p) + (@ + WA —p — M/n — [2a°(1 — «)/n] 2Zjas’45 —
2r(1 — a¥)/n] X 7-1jA; where .

n—j
Aj - kz=:0 (Z) (k ::]) (p + T)k(l —p— W)n—kpk+1(1 _ p)n—k—J.
Fix =, and write ps(p, p + 7; @) = ps(p; a¥). By the Mean Value Theorem,
pi(p; &™) = ps (1 — 7)/2; &) + ps(g; @) (p — (1 — 7)/2) where g is between
pand (1 — 7)/2. It follows by an induction onn that ps(g; ") (p — (1 — 7)/2) <
0 for all values of =. Hence ps(p; a¥) < ps((1 — 7)/2; a*) = ps((1 — )/2,
(1 + 7)/2; a*) that is, the point (p:, p2) maximizing ps(p1, P2 ; o) lies on
the line p; + p. = 1. Nowlet R = (1 — x)/2and 8§ = 1 — R. Then

n—j

.+ _1—1r2_2a+(1—a+) Z 2 pnti gn—3i _’<n)< n )
ps(R,S,a)— on e ’Z;]R S” kZ% k k-l-]

_21r(1—a+) N ki ,._~"—j<n>< n )
T LIRS () e 45

6) =1 k=0
_ 1 — 1r2 2a+(1 o a+) L . 2 (2n> ja2n—j
T~ Tom n? j;&-l G —mn) J B'S
_ 2%’(1 — a+) 2Zn (j _ n) (2?7') RjS%_j.
n j=n+1 J

The last step follows from a change in summation and the fact that

2065 - G

The minimax value of o' is that value of o minimizing supo<.<105(R, S; o).
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For n = 1 it is simple to show that = = 0 maximizes the risk and the minimax
value of o' is L. For n > 1 the computations become formidable. We investigate
the behavior of & when 7 is large.

The incomplete moments, from j = n + 1 to 7 = 2n, of the binomial distri-
bution, g, , are given by

2n
U = (j — 2nR)" (2?‘> RIS r=0,1,2,---.
j=n+1 J

Expressing (6) in terms of uo, u1 and us , we have ps(R, S;at) = (1 — #%)/2n —
Ra*(1 — at)/nfu + nPatuo — 2nap] — [2r(1 — af)/n]lun — nwpg). Then,
using the recursion formulae cited in ([5], p. 135) we have ps(R, S; o) =
(1 — 7)/2n + (1 — a")RT[—24"S/n + 2r(a™ — 1] + (1 — & )po-
[—4a"RS/n + 27*(1 — a™)] where

2n
T; = (2"> RS and w= > Tj.
J j=n+1
For n sufficiently large, we ignore the terms —4a"RS/n and —2a%S/n, and
ps(R, 8; ") is given approximately by (1 — #%)/2n + (1 — a¥)2n[ruo — RT.).
The term [wuo — RT,] is non-positive for all n and for all 0 < = < 1. Thus for
large n, the minimax value of o must be close to zero.

The author is indebted to Mr. Richard Black for computing Table 1 of minimax
values. The time-consuming procedure allowed computations to two decimals
only.

Ayer et al. [1], have found the maximum likelihood value of &} to be 4, for all .

4. Asymptotic estimator. Whether the minimax mixed estimator is admissible
is an open question. In this section we present for a normal distributional problem
asymptotically equivalent to the binomial one, an estimator that is both minimax
and admissible. The estimator is readily computed.

Let X;¢ = 1, 2, - -+ n be mutually independent normally distributed random
variables each with mean 6 and variance V°. In [4] it was shown that if the pa-
rameter space is @ = {6 | 6 = 0}, then an admissible and minimax estimator of
0is X + Vot (Xn}/V) where »(t) = exp[—¢/2]/["w exp[—s*/2)ds.

Consider the case of two ordered means. X;, ¥; 4 = 1 --- n are mutually
independent normal random variables, with E{X;} = 6., E{Y;} = 6, and

TABLE 1
n Qn n ag n a:f n a','.' n o[,',' n a','.'
1 .50 6 .31 11 .22 16 17 21 .14 26 12
2 .49 7 .29 12 .20 17 .16 22 .14 27 12
3 .44 8 .26 13 .19 18 .16 23 .13 28 12
4 .39 9 .25 14 .19 19 15 24 .13 29 A1
5 .35 10 .23 15 .18 20 .15 25 .12 30 A1
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var. {X;} = var. {V.;} = 1,7 = 1,2, --- n. The parameter space is

Q ={(01, 62) | 62 = 64}.
We require an estimator 6 = (81, 62) of-§ = (61, 62). The square error loss func-
tion is
(7) (81— 01)* + (82 — 0:)* = 361 + 6, — (6. + 0:)) + 4[0: — 61 — (02 — 61)]".
On the right-hand side of (7) we are estimating, in the first term, a parameter
01 + 62 where — » < 6; + 6, < o, and in the second term a parameter 6, — 61
where §; — 6: = 0. This suggests estimators satisfyingds + 86,1 = YV + X, 8. — 01 =
Y — X + 2/n)b((n/2)}(Y — X)), or
(8) 5= (81,8) = (X — @2n) W((n/2)X(Y — X)),
Y + @n)H((n/2)NY — X))).

We have in fact,
TueoreM 3. The estimator (8) is admissible and minimaz for

Q = {(61,0:) | 62 = 64}.

Proor. The proof parallels that given in [4], and is only sketched here. With
no loss of generality we take n = 1.
We take as a priori distribution
M(0) = (1/m0”) exp (—%) (61 + 63)/o 0eQ
=0 02 Q.

Then the Bayes estimator 6, = (81(¢), d2(a)) of 6 with respect to A,(8) is com-
puted to be

(X1 — 27%(h(Y1 — X0)/2), B (Y1+ 2750(Y1 — X1)/2%)))
where k* = ¢°/(1 + ¢°). As
e w, 8,—8=(X1— 2 (Y1 — X1)/2), Vi + 27H((¥Y1 — X1)/2Y).

Now suppose 8 is not admissible. Then there exists an estimator 6" such that
ps+(0) = ps(6) for all & Q, and strict inequality for some 6. Consider the quantity

(9) [r(8) — r(8)1/Ir(8) — r(5,)]

where 7(38), r(8%) and r(8,) are the average risks with respect to A,(9) of the
estimators 8, o+, and &, respectively. The numerator of (9) is non-negative.
Using the method of Blyth [2], it can be shown that the ratio (9) > 1, for ¢
sufficiently large. This implies r(8,) > 7(87) which is false. This contradiction
proves admissibility.

Further the differential inequality procedure of Hodges and Lehmann [3]
shows that a minimax estimator of 6 has risk <2. The risk of 6 is

2 — (6, — 01)/2 - E{p((Y1 — X1)/2)} = 2.
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Following [4] we have
2 — (6, — 6,)/2 - E{v((Y1 — X1)/2D)} - 2

as ; — 6, — . Hence § is minimax.

The estimator (8) could be used in the ordered binomial estimation problem,
if » is large enough to permit a normal approximation. For properties of the
function », the reader is referred to [4].
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