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0. Summary. The principle of maximum entropy, together with some gen-
eralizations, is interpreted as a heuristic principle for the generation of null
hypotheses. The main application is to m-dimensional population contingency
tables, with the marginal totals given down to dimension m — r (‘“restraints
of the rth order”). The principle then leads to the null hypothesis of no “rth-
order interaction.” Significance tests are given for testing the hypothesis of no
rth-order or higher-order interaction within the wider hypothesis of no sth-
order or higher-order interaction, some cases of which have been treated by
Bartlett and by Roy and Kastenbaum. It is shown that, if a complete set of
rth-order restraints are given, then the hypothesis of the vanishing of all rth-
order and higher-order interactions leads to a unique set of cell probabilities,
if the restraints are consistent, but not only just consistent. This confirms and
generalizes a recent conjecture due to Darroch. A kind of duality between
maximum entropy and maximum likelihood is proved. Some relationships
between maximum entropy, interactions, and Markov chains are proved.

1. Introduction. This paper deals with a certain heuristic method of generat-
ing null hypotheses. By a ‘“null hypothesis” we mean a hypothesis that is liable
to be worth testing. The method might also be of value for curve-fitting and
surface-fitting. Most of the paper however is concerned with interactions in
multidimensional contingency tables and in Markov chains.

Let X be a random variable whose (physical) probability distribution is not -

completely given. Of all the available distributions there will usually be one of
maximum entropy, i.e., of maximum uncertainty. We shall consider some im-
plications of the following principles.

PrincipLE oF Maximmum EnTROPY. Let X be a random variable whose distribu-
tion is subject o some set of restraints. Then entertain the null hypothesis that the
distribution is the one of mazimum entropy, subject to these restraints.

Historical note. Jaynes [23] used precisely the same formal procedure, but
with a different interpretation, since he was concerned with the choice of dis-
tributions of nonphysical probabilities, sometimes called “credibilities”, as a
method of replacing the use of a Bayes-Laplace postulate of a uniform distribu-
tion of credibility. He applied the method to statistical mechanics following
earlier writers such as Boltzmann [2] and Gibbs. For the application to statistical
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912 1. J. GOOD

mechanics, we suspect that our interpretation of the principle of maximum
entropy would have been logically more appropriate. That is, the principle of
maximum entropy generates much of statistical mechanics as a null hypothesis,
to be tested by experiment.

Prima facie reasons for entertaining the principle of maximum entropy, and
some generalizations. The mere fact that the principle of maximum entropy
generates classical statistical mechanics, as a null hypothesis, would be a suffi-
cient reason for examining many of its implications in mathematical statistics.

The principle can be expressed in slightly different words, such as: entertain the
hypothesis, H, that maximizes the expected amount of selective information per ob-
servation. Or again: entertain the hypothesis, H, for which the expected weight of
evidence per observation, as compared with the hypothesis of a uniform distribution,
is a minimum, i.e., in the discrete case, ) p; log(np;) is a minimum, where
P1, D2, - -+ , Dn are the probabilities of the » mutually exclusive and exhaustive
possible values of the random variable. (See below for a definition of “weight of
evidence.”)

The various descriptions of H are simple enough to justify the selection of A
as a null hypothesis, in accordance with Occam’s razor. It is true that Occam’s
razor is usually invoked in order to justify the selection of a scientific theory, but
the logical status of a null hypothesis is much the same as that of a scientific
theory in the sense that both are conjectured to be approximately valid, and are
considered to be worth testing.

It could be objected that, especially for a continuous distribution, entropy is
somewhat arbitrary, since it is variant under a transformation of the independent
variable. (In Shannon’s theory of information, this lack of invariance is immate-
rial since it cancels out when one calculates the expected amount of information
provided by one distribution concerning another one, if the first distribution is
absolutely continuous with respect to the second one.) To this objection we have
a few replies:

(a) The principle of maximum entropy is intended only as a heuristic principle
for generating null hypotheses for consideration. Statistical theory is poor in such
suggestions: hypotheses are usually assumed to be formulated before statistical
theory is invoked. This is a weakness in statistical theory, regarded as a part of
scientific method, consequently some new results in this direction should be of
interest.

(b) The independent variable should be taken in a natural or simple way, or at
least the most natural and simplest ways should be tried first. This again is an
application of Occam’s razor, and it is not peculiar to the principle of maximum
entropy that naturalness and simplicity have not been adequately formalized.

(¢) The entropy of a continuous distribution can be thought of as that of a
discrete distribution, if the independent variable is measured to only limited
accuracy. (For example [20], p. 114.) The accuracy that is attainable, in any
physical problem, might vary from one part of the range to another: ¢t certainly
would vary if the range were infinite. One natural independent variable is the one
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for which the range is divided up into the smallest number of intervals such that
two adjacent intervals are only just discernible by the apparatus at your disposal.
Then a physically natural independent variable will be one in which each of these
intervals is of equal length. The principle of maximum entropy would then lead
to the null hypothesis in which each just discernible interval is assigned equal
probability. (Compare Lindley [32] and Good [18].)

(d) More generally, if, not allowing for the restraints, we have some reason
for regarding a distribution, of density function g(-), as ausgezeichnet, we could
replace the entropy by Turing’s expression,

52}

f f(z) log === /(z) dz = {log #(z)
9(x) 9(x)

which has been called an ‘“‘expected log-factor” (logarithm of a Bayes factor) or

expected weight of evidence in favour of f(-) as against g(-) per observation,

given f(-); or the cross-entropy between f and g. ([11], pp. 72 and 75, [9], [14],

[26].) We should then have the following generalization of the principle of

maximum entropy:

PrincipLE oF MiINIMAL DiscrRiMINABILITY. Let X be a random variable whose
distribution s subject to some set of restraints. Suppose that, before the restraints
were known, there was some distribution that seémed reasonable to entertain as a
null hypothesis, called an initially ausgezeichnet hypothesis. This hypothesis is
perhaps refuted by the constraints. Then, in view of the restraints, entertain the null
hypothesis that, if true, can be discriminated from the ausgezeichnet hypothesis at
the minimum rate, i.e., for which the expected weight of evidence per observation is
least.

If the ausgezeichnet distribution is not refuted by the constraints, then of
course the null hypothesis picked out by the above principle will be the ausge-
zeichnet distribution itself. (See example (i) below.)

B. O. Koopman has mentioned (private communication) that cross-entropy
can be used in the foundations of statistical mechanics for non-equilibrium condi-
tions, so that we have another reason for regarding the principle of minimal dis-
criminability as a natural generalization of that of maximum entropy. ([9], [14].)

When there is no distribution that is ausgezeichnet, then the question will
arise whether the independent variable, z, has been chosen in the most natural
manner. If it has, then the uniform distribution and the principle of maximum
entropy will be reasonable. If this seems arbitrary, it should be remembered that
this degree of arbitrariness is present whenever entropy is discussed, not merely
in the present application.

For the sake of simplicity, this generalized form of the principle of maximum
entropy will not be used in the present paper.

A different kind of generalization can be formulated for the purpose of generat-
ing composite hypotheses:

PrincipLE oF MaxiMum ConpiTiONAL ENTROPY. Suppose that for some simply
defined class of restraints, the principle of maximum entropy leads to a simply
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expressible set of null hypotheses. Then this whole class can reasonably be set up as a
composite null hypothesis, even when the restraints are not operative.

Note that this second principle involves an additional element of judgment in
its application, since it refers again to the notion of “simplicity”” for which there
still exists no fully satisfactory formal definition.

A principle of minimal conditional discriminability could now be stated, by
combining the two generalizations. Its statement is obvious and will be omitted.

Our main application of the principle of maximum entropy is to m-way
(= m-dimensional) contingency tables. We are led to consider null hypotheses
of no “rth-order interaction’. It seems to be useful in the analysis to make use
of the m-dimensional discrete Fourier transform of the logarithms of the cell
probabilities.

Section 2. concludes with some significance tests for testing the hypothesis of
no rth-order or higher-order interaction within the wider hypothesis of no sth-
order or higher-order interaction, some cases of which had previously been
treated by Bartlett [1] and by Roy and Kastenbaum [37].

Section 3. discusses the relationship of the work with (i) two papers that ap-
peared very recently, Plackett [35] and Darroch [5]: a proof of a conjecture of
Darroch’s is found to be implicit in the present paper; (ii) latent class analysis;
(iii) interactions for Markov chain; (iv) contingency tables for a small sample;
(v) another method for generating null hypotheses; (vi) orthogonal interactions.

A potential application of considerable interest, for multidimensional con-
tingency tables, is to problems of pattern recognition, such as to the recognition
of phonemes in speech or of the letters of the alphabet from script. If each letter
is classified by m attributes, taking respectively d; , dz, - - -, dn values, then a
sample could be summarised by means of a dy X ds X --- X dn X 26 con-
tingency table. If the sample size is not very large, nearly all the cell entries in
the table might be very small, so that a method is required for estimating the
population probabilities. In principle this would lead to a method for determining
the conditional probabilities of the letters given the values of the m attributes.
It is hoped that the present paper will contribute to the solution of this problem.

2. Examples.

Example (i). Finite discrete distribution. Let X = ¢ with probability p; (z =
1,2, ---,n;p3+ p2+ -+ + p. = 1), where the p;’s are unknown. If we maxi-
mize the entropy — 2, p; log p; subject to the restraint > p: =1 we find that
P1= pa = --- = p, = 1/n. The null hypothesis thrown up for consideration by
the principle of maximum entropy is thus that the probabilities p; are all equal.
Formally, this is the same as the usual Bayes-Laplace postulate, but the meaning
is logically entirely different here, since our null hypothesis states that the
physical probabilities are all equal. For a discussion of the distinction between
kinds of probability see, for example, Good [16].

If the principle of maximum entropy is generalized to a principle of expected
weight of evidence, relative to a distribution (g.), as described above, then the



MAXIMUM ENTROPY FOR HYPOTHESIS FORMULATION 915

null hypothesis that is thrown up is that the p.’s are equal to the ¢;’s. This indeed
is a reasonable selection of a null hypothesis.

Ezample (ii). Continuous distribution. Let X be a random variable with a con-
tinuous n-dimensional distribution in unbounded n-space, and let the second
moments be assigned. Then Shannon [39], p. 629, mentions that the X of maxi-
mum entropy is Gaussian with zero means. This then is the null hypothesis for
the distribution of X that is suggested by the principle of maximum entropy.
If the covariance matrix is singular, then X is restricted to a manifold of dimen-
sionality less than n, and the entropy must be defined with respect to the reduced
space. See also Good and Doog [20], p. 122.

Even if the second moments are not given, the principle of maximum conds-
tional entropy suggests as a null hypothesis that the distribution is Gaussian of
mean zero. A null hypothesis generated for a time series is that it-is Gaussian.

Ezample (iii). Distribution with a finite number of moments assigned. Let us
again consider a discrete distribution, (p;), where 7 can take n distinct values;
and suppose that we have assigned values for the moments

Yipi=u (r=01-,k k<n).

Assume further that these restraints are consistent and do not force any of the
pi’s to vanish, i.e., the restraints are not only just consistent. In other words, the
set of consistent restraints contains an open neighbourhood of the point (us,
ui, -+, k). We wish to maximize y = — p: log p; subject to the restraints.
The Lagrange expression is

—chlogpc+>\o+>\1 DSipit o+ N D i

where A\, (r = 0, 1, ---, k) are undetermined multipliers. The equations for a
stationary point are '

T4 logpi = N4 0\ + e + 7+ 4+ "2

Now the Hessian matrix of second derivatives of y is a diagonal matrix that is
negative definite. So there can be at most one stationary point and this must be
an absolute maximum if it exists. In order to prove that it does exist, it is enough
to show that the maximum value of y cannot occur on the boundary of the region
of definition, i.e., at a point where any one of the p,’s vanishes. This can be shown
by precisely the same argument as is used in Example (vii) below for proving
that y cannot be a maximum on its boundary of definition. (The proof depends
on the finiteness of n.) It follows that p, is of the form of the exponential of

a polynomial, exp(co + i + ci® + -+ + ed’), where the coefficients ¢,
¢, * -+, Cxare uniquely defined by equatmg the moments to the assigned values.

The above argument generalizes at once to the case Where 7 is replaced by an
arbitrary function, ¢,(¢), where ¢o(¢) = 1, so that u, becomes a generalized
moment. The argpment also generalizes to discrete distributions of several
variables, 7, %2, -, im.
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The result shows as a by-product that if the assigned moments (or generalized
moments) are consistent, and not “only just” consistent, then it is possible to
satisfy the restraints by taking log p; as a polynomial of degree k, or as a gen-
eralized polynomial, ¢o + cip1(2) + - -+ + crer(?).

Note that if any of the moments is unspecified, the corresponding term in the
polynomial is missing.

Formally, and with considerable risk, we may make the transition to con-
tinuous distributions. If the probability density is f(zi, Z2, = -+, Zm) = f(z)
and if we are given a finite number of moments, then the null hypothesis gener-
ated by the principle of maximum entropy is that f(z) is the exponential of a
polynomial, in which there is a term in #* = 2i'25® - - - zir (or in g(z)) if the
expectation of 2* (or of ¢x(z)) is assigned. A necessary condition for the validity
of this formalism is that the integral of the exponential of relevant polynomials
should converge over the range of values of z. For example, in the one-dimen-
sional case, the moment of highest assigned order must be of even order, other-
wise the upper bound of the entropy is not attainable. This difficulty can occur
in the discrete case also, when the values of ¢ range from — « to + .

In problems of curve-fitting, it is not usually reasonable to consider an infinite
range for the independent variable. Any extrapolation of a fitted curve outside
the range of the actual observations, and especially into the extreme tails, is
likely to be very tentative. Consequently it is reasonable to use only a finite
range for the independent variable, and this has the advantage of avoiding the
above difficulty. But, in view of this difficulty, it seems safer to work with
moments of order 1, 2, 3, - - - , 2k, where 2k is even.

If we restrict our attention to ordinary moments, the implications for curve-
fitting are as follows. 7

Suppose it is considered reasonable to summarise the features of the possible
distributions by means of moments up to an even order. Then the probability-
density curves thrown up by the principle of maximum entropy are exponentials
of even-degree polynomials exp(co + ¢z + - - - + ca™ ), Where ¢ can be thought
of as a normalizing constant. If the data consists of observations 2, , zz, --- , 2w,
then the log-likelihood of the above density is

2k N .
Ay = Z E c,w} ’

=0 j=1
and the coefficients can be determined by maximum likelihood. The hypothesis,
Hay , that 2k is the highest order term, can be tested within the wider hypothesis
Hyp 421 by means of the likelihood-ratio criterion 2\z12: — 2Aa , Where the caps
indicate that the log-likelihoods have been maximized. This criterion has, for
large N, approximately a chi-squared distribution with 2! degrees of freedom,
when the hypothesis Hy is true.

It should be noted that if we are driven to reject say Hs, H,, and Hg this

would be evidence against the entire sequence Hy , Hy , Hg, - - - . This would be
especially true when some rival method of curve-fitting is also considered to be
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reasonable. For example, a linear mixture of two normal distributions might, in
a given practical situation, seem more reasonable than the exponential of a
quartic. Here again the likelihood-ratio test could be used, in the generalized
forms suggested by Cox [4]. Both here and elsewhere, the generalized likelihood
ratio, generalized in a different manner, could be employed if desired [17].

For surface, or hyper-surface, fitting, one could define H,, as the composite
hypothesis whose parameters are all the moments through the 2kth. The criterion
212 — 2)a , for example, would have 4k -+ 1 degrees of freedom in two dimen-
sions, and

(d + 2k — 2)!1 (d + 4k — 1)/(2k)! (d — 1)!
in d dimensions.
Example (iv). Two-way “population” contingency table, with assigned marginal
probabilities. By a ‘“population” contingency table we mean an array (p:;) of
population probabilities, with row sums (p;,) and column sums (p,;). (An acute

accent implies here and later that the corresponding suffix has been summed
out.) It is a question now of maximizing

- Z]: pi; log pi;

subject to the restraints

~

]Zpii':pi:, Zpej= P

Note that the principle of maximum entropy can here be expressed by saying
that the expected amount of mutual information between rows and columns is
minimized. (Cf. Hartmanis, [22], Lewis, [31].)

An application of Lagrange’s method of undetermined multipliers (see the
next example) leads to the null hypothesis p;; = p;,p,;, i.e., to the hypothesis of
independence of rows and columns, i.e., of no association in the contingency
table.

The principle of maximum conditional entropy leads us to the same verbal
expression for a null hypothesis, even when the marginal probabilities are not
assigned. In this case the null hypothesis is of course composite.

The above null hypothesis is closely connected with the assumption made by
Good [13] for the purpose of estimating true population probabilities given a
large (sampled) contingency table. The assumption was that the log-association
factors log(p:;/p:, - p,;) has initially a normal distribution of mean zero. If this
assumption were made when only the p;,’s and p,,’s were known, the subjective
expectations of the first-order interactions (see below) would be zero, and this
would again suggest the hypothesis of independence of rows and columns.

Ezample (v). m-dimensional population contingency table, (p:) = (Piy,iz,vim)
with the totals Piy, - 5 Duigewer s *** 5 Dreeerim GSSIgNed, i.e., the totals of all com-
plete (m — 1)-dimensional blocks.
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The restraints are
(1) E ] Pi = Digsreeery ete.

$oi830  eimm
By using Lagrange’s method of undetermined multipliers, we find equations of
the following form for the distribution (p;) of maximum entropy: 1 + log p; =
P A™ By giving 7 the two values (41, %2, - , tw) and (i1,

2, **+ , im) In turn, we see that
10g (Diyigeeim/ Pifige-rim) = A — A§?-
From this we can deduce that p; is of the form
pi = g1(11)g2(%2) -+ gm(im),
and hence that
Pi = DigsreeesDrigreeer = ** Doseoerip -

Thus the principle of maximum entropy generates for consideration the null
hypothesis of independence of the coordinates of 7. Verbally the same null
hypothesis can be generated by the principle of maximum conditional entropy.

In the remainder of this paper we shall be concerned with other natural re-
straints on multidimensional population contingency tables, and consequently
with generalizations of the notion of independence. To say that the rows and
columns of a population contingency table are independent is equivalent to
saying that the rank of the table, regarded as a matrix, is unity. Some of our work
can be interpreted as generalizing the notion of unit rank to more than two
dimensions. But see the remark following Theorem 3, part (v).

For an excellent survey of the literature of interaction in multidimensional
contingency tables see B. N. Lewis [30]. We cannot agree however with his re-
mark ([30], p. 88) that no new problems arise when one goes beyond three
dimensions.

Ezample (vi). m-dimensional 2 X 2 X -+ X 2 population contingency table,
(i) = (Pigigerim) (81,82, ++ ,Im = 0, 1), with the subtotals of all rows, columns,
shafts, ranks, files, turnpikes, spurs, and corridors assigned, i.e., with p,iy...ip, »
Dirigeovin s *** Digigeerim—y, GSsigned. (All other partial subtotals, namely with
more than one acute accent, can be deduced from these.)

In this example there is only one degree of freedom. If (g:) is a possible set of
probabilities with the assigned totals, assuming that there is such a set, then
every other set is necessarily of the form p; = ¢; + (—1)""'=, for some real = for
which
(2) - Inin|i| even(i é X é Injn]i] 0ddqs

and where |¢| =41+ G+ - + in.
We wish to select a null hypothesis by maximising

|$| even |$| odd

- 2 (gi+ =) log(g: +2) — Z (g: — =) log(g: — ),

*
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subject to the above inequality on z. The derivative of this expression with
respect to z is -

|$] even |¢] odd

— 2"+ 2" = 30 log(gi + @) + 20 log(gi — 2).
By equating this derivative to zero we obtain the condition

|| even ] odd
(3) II @+ =11 (@-2),
ie.,

|¢] even |¢] odd

(4) I;[ p: = H Di.
The left side of (3) is an increasing function of x, and the right side is a decreasing
function of x, so there is at most one root within the permissible range. When
2 = —min ¢;(|¢| even) the left side is less than the right side, and when z =
min ¢;(|¢| odd), the left side exceeds the right side, so there is exactly one root.
When m = 3, the equation is a cubic in z, and we see that the principle of maxi-
mum entropy leads to the same determination of the p,’s as was proposed by
Bartlett [1] v ho described the Condition (4) as that of the vanishing of the
second-order interaction for a 2 X 2 X 2 table. The vanishing of second-order
interaction can be regarded as an extension of the notion of independence,
which, for a three-dimensional table, is the vanishing of both first-order and
second-order interactions. (Roy and Kastenbaum [37], describe the vanishing
of second-order interaction for a three-dimensional table as ‘“‘no interaction”, but
we prefer Bartlett’s description.)

Ezxample (vil). m-dimensional 2 X 2 X --- X 2 population contingency iable
with all “‘rth-order” subtotals assigned. In order to generalize the above ex-
ample to some cases where not all the sub-totals are given, it is convenient to
introduce some definitions.

If we know the sums of p; over each subset of m — r coordinates, we say that
we have a complete set of rth-order restraints (r = 0,1, -+ ,m — 1). Whenr = 0
we have only the tautological restraint ) p; = 1. When r = 1, we have the
case of Example (v), except that we are now thinking mainly in terms of 2 X
2 X --- X 2 tables. When r = m — 1, we have the case of Example (vi). If we
have a complete set of rth-order restraints then we also have a complete set of
all lower-order restraints.

- Next we define the m-dimensional mod 2 discrete Fourier transform, al,of a
function a; of 7 (see, for example, Good [10]) :

(5) af = 2 (—D%;: (= iji 4+ - + imjm)

for which the inversion formula is

(6) a; =2"" ; (—1)%F .
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A complete set of rth-order restraints implies that we have the values of the dis-
crete Fourier transform p} for precisely those j for which |j| < r. For moduli
greater than 2, this condition would be that the number of non-vanishing com-
ponents of j must not exceed r. The proof of this assertion is left to the reader.

We define the interactions in the population contingency table by means of
the discrete Fourier transform of the logarithms of the probabilities, thus:

() I; = ’Z (—1)"log(2"p),

and we call I; an inferaction, of order |j| — 1. The order of an interaction runs
from —1 to m — 1. In this definition, the factor 2™ automatically drops out if
lil > o.

It should be pointed out that lLancas‘c.er [29] and Lewis [30] define three first-
order interaction terms for a 2 X 2 X 2 table as the corresponding interactions
for the three marginal 2 X 2 tables. Our meaning for “first-order interaction” is
quite different and is more analogous to the definition of interaction in a 2"-fac-
torial design, which is expressible as an n-dimensional mod 2 discrete Fourier
transform [10]. If a new name is required, our interaction could be called a
“Fourier interaction’ or a ‘“Fourier log-interaction”, but, in this paper, we shall
call it simply an “interaction” (of appropriate order), and trust that no con-
fusion will arise. For the case m = 3, the vanishing of our second-order inter-
action is equivalent to the vanishing of Bartlett’s second-order interaction [1].

‘We now state our main result for2 X 2 X --- X 2 tables.

TarEOREM 1. Let (p:) be an m-way 2 X 2 X -+ X 2 population contingency
table, with a complete set of rth-order restrainis. We assume that these restraints are
consistent and are not “only just’ consistent and so do not force any of the p/’s to
vanish. Then the null hypothesis generated by the principle of maximum entropy is
that the rth-order and all higher-order interactions vanish. If we have no genuine
restraints (r = 0), then the maximum-entropy null hypothesis is p; = 2™ (for all
1); if r = 1, then the maximum-entropy null hypothesis is that of no association,
Di = DigseresDeigreer *** Doseeerigy 3 ONA f 1 = m — 1, then the maximum-entropy null
hypothests is that the single (m — 1)th-order interaction vanishes, i.e., that

|¢| even |¢]| odd
(8) ];I pi = H Di.
Proor. We wish to maximize y = — ), p; log p; subject to the restraints and

to the inequalities p; = 0 (for all 7). These restraints and inequalities define a
bounded convex region such that each point on the boundary has at least one of
its coordinates, p;, equal to zero. It can first be proved that the maximum
value of ¥ cannot occur on the boundary. Suppose, for example, that there is
just one p; , called p for short, which vanishes. (The following argument gener-
alizes easily to the case of more than one such p.) Let the smallest of the other
pi’s be § > 0. If p is replaced by a small positive number, ¢, then the restraints
can be satisfied by changing some or all of the other p,/’s by small quantities
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which are proportional to eif e is sufficiently small. (The constant of propor-
tionality will depend on the boundary point.) The total change in the sum of all
the terms in y, other than —p-log p, will therefore be less than 2™ times Ae,
where A does not depend on e. By making e small enough, the change in p-log p
will dominate the situation, since [log €| can be made arbitrarily large. Hence the
maximum of y cannot occur on the boundary. It must therefore occur at a
stationary value subject to the restraints. But the Hessian matrix of y is negative
definite, so y must have exactly one stationary value, and this must be an inte-
rior point of the region of definition.

The restraints can be expressed in the form >_; p:(—1)" = p¥(|j| £ r) where
the p7’s (|j| £ r) are known. We apply Lagrange’s method of undetermined
multipliers in order to find a stationary point. The Lagrange expression, before
differentiation, is — > _; p; log p: + D ; \;p¥ , where the A;’s are the undeter-
mined multipliers, and \; = 0 if |j| = r. The partial derivatives with respect to
the p/s are equated to zero, giving the equations 1 + log p; = >_;N\;(—1)%.
The right side is seen to be the discrete Fourier transform of (X;). If then we
take the discrete Fourier transform of both sides, and apply the inversion
formula, we see that I; = 0 whenever |j| > .

We can summarize the situation by saying that the maximum is uniquely
determined from the equations

(9) > (=)= o}l 5 1)
(10) Z (—1)“1og p; = 0(Jj| > 7).

It should be mentioned that the problem of numerically maximizing the
entropy, subject to an arbitrary set of restraints of the form of knowing sums of
p.’s, not necessarily a complete set of rth-order restraints, was treated by David
T. Brown [3], following Hartmanis and Lewis [22, 31]. The method is an iterative
one in which, at each stage, the “current” values of p; are scaled so as to satisfy
one restraint. The restraints are taken in turn cyclically. We shall refer to the
method as the iterative scaling procedure. The work of Hartmanis was concerned
with the entropy of infinite Markov chains. (Some of its formalism is similar to
the likelihood-ratio formalism for a sample of a Markov chain in Good [12],
which was based on papers by Bartlett and Hoel.)

-Example (viil). m-dimensional d; X d2 X -+ X dn. population contingency
table, with all the rth-order subtotals assigned. Let ¢ be a “multipartite residue”
mod (d;, ds, -+, dn), that is, a “vector” with m components, 41, %2, *+ , in,
where 7, is a residue mod d; and is conveniently represented by one of the integers
0,1, -+, dy — 1, where 7,, ---, ¢, have similar meanings, and where d, =
2(s=1,2, -+ ,m). Let w be the primitive root of unity, »; = exp[2ax(—1)*/dy],
with similar meanings for wy, ws, *+*, wm . The m-dimensional discrete Fourier
transform mod (d; , dz , **+,dm), al , of a function a,., of %, is defined by

(11) Z whh $3d2 ., ‘mhna‘ Z o' a‘ ,



922 1. J. GOOD

where '/ = wj' - . . w;m™ and where j has the same range as 7. (See, for example,
Good [19].) The Fourier inversion formula is

(12) a;i=dit -yt 2w Vel

J

Suppose that we have a population contingency table (p;), and we are given a
complete set of rth-order restraints, that is, we know the sums of p; over each
subset of m — r coordinates. It follows that we have the values of the discrete
Fourier transform, p} , for precisely those j for which [j| < r, where now [j] is
defined as the number of non-vanishing components of j. We define the (complex)
interactions by

(13) I;= 3 w”log (di -+ dups),

and we call I; a (complex) interaction of order |j| — 1. If |j| > O, the factor
dids - -+ dn is easily seen to be irrelevant.

Although this definition of interaction is a natural extension of (7), it is not of
immediate intuitive appeal to a statistician, partly because the interactions are
usually complex unless the d,’s are all equal to 2, and partly because the inter-
actions depend on the particular sequence of the rows, and of the columns, and
of the corridors, and so on. [The same difficulty can occur when the theory of
finite Abelian groups is applied to factorial experiments, as in Fisher [8], and in
fact the discrete Fourier transform arises naturally in the representation theory
of finite Abelian groups.] The justification of the definition is that it is a useful
tool for our purposes, and also that the vanishing of the rth-order and higher-
order interactions can be expressed in real forms, as is shown by Theorem 3
below. ‘

We note in passing that if the interaction of order —1 vanishes then all
the p;’s must be equal; and also that if all interactions of non-negative order
vanish, then again all the p,’s must be equal. The first assertion follows from the
fact that D p; log p; takes its minimum value when all the p.’s are equal. The
second assertion is a simple consequence of the discrete Fourier inversion formula.

TuEOREM 2. Let (p;) be an m-dimensional dy X d2 X -+ X dm population con-
tingency table, with a complete set of rth-order restraints. We assume that these re-
straints are consistent and are not “only just” consistent. Then the null hypothesis
generated by the principle of maximum entropy is that the rth-order and all higher-
order interactions vanish. (In this paper we shall not be concerned with the possi-
bility that the rth-order interaction vanishes without ij,he vanishing of all higher-
order interactions.) ,

The proof of Theorem 1 can be at once generalized in order to prove Theorem
2, by making use of the more general definition of a discrete multidimensional
Fourier transform. It is not necessary to give the details here.

Tt is interesting to note what would have happened if we had used ) p; as a
measure of “roughness’ in place of the negentropy. The application of Lagrange’s
method of undetermined multipliers would have led to a stationary value of the
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roughness at a point where the discrete Fourier transforms of the probabilities
themselves, instead of their logarithms, had vanishing components for |j| > r.
But this stationary point would not necessarily have been possible, since some of
its components could have been negative or even complex. The minimum rough-
ness could very well occur on the boundary of the region of possible values of the
p.’s, and its determination would be a problem in quadratic planning. Since
machine programs exist for quadratic planning, it might be convenient to use
the point obtained in this way as a first approximation in an iterative search for
the point of maximum entropy, such as the iterative scaling procedure.

The next theorem gives various transformations of the null hypothesis men-
tioned in Theorem 2. In order to state it we need a definition of a “subtable’” of a
given table. A subtable is a table obtained by.allowing each suffix (“‘coordinate’’),
2.(s = 1,2, ---,m), to range only over a subset of its possible values, 0, 1, - - -,
d, — 1. A subtable could be “normalized” by dividing all its entries by their
sum, but we shall not usually require normalization in this paper.
We shall be interested in three kinds of subtables, (i) those in which the
dimensionality is reduced below the value m in virtue of one or more of the
suffixes being restricted to a single value; (ii) those in which each suffix is re-
stricted to have only two values, so that we get subtables of “‘size” 2™; (iii) a
mixture of both features, so that we have subtables of size 2" for r < m. It is
possible to designate a subtable by stating the subsets to which the indices are
restrlcted for example, we could talk in a self-explanatory sense of the subtable
(81,81 5 -+ 3G, %0 ;%rq1;trsz; 5 im). This could be a subtable of the third
of the kinds deﬁned above. If each index is either restricted to a single value or
else is not restricted at all, we get a special case of a subtable of the first kind,
and call it a complete subtable of dimensionality r, or a complete r-way subtable,
where r is the number of unrestricted indices.

THEOREM 3. The following propositions are each equivalent to vanishing of the
rth-order and all higher-order interactions, i.e., to the null hypothesis of Theorem 2:

(i) piis a product of (T’) positive functions, namely a function of (41,42, « + + ,%r)

and a function of (41 ,%2, *+* , %r1 , tr41), and so on, for all selections of r components
of ©. (Compare (5.1) of Roy and Kastenbaum [11].) For r = 0 this states that p; is
independent of 1.

(ii) AWl rth-order interactions vanish in all (r + 1)-dimensional complete
subtables.

(iii) (For the case r = m — 1.) The (m — 1)th-order interactions vanish in all
2 X 2 X -+: X 2 subtables of size 2™.

(iv) The rth-order and higher-order interactions vanishin all2 X 2 X -+ X 2
subtables of size 2™. (This last proposition includes (iii) as a special case, but we
stated proposition (iii) explicitly for the sake of the intelligibility of the proof
below.) _

(v) All rth-order interactions vanish in all 2-X 2 X --- X' 2 subtables of size

2", This statement is a natural generalization of the condztzon for a matriz to be of
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rank 1, namely that each of its 2 X 2 minors should vanish. But our definition of
“rank 1 is not the same as that in the literature of higher-order determinants
(see, for example, L. H. Rice [36]). We are, for example, thinking of a determinant
of a2 X 2 X 2 matrix (a;;) as defined by the quartic polynomial awo@o1Gi0@110 —
G1000010%001 0111 , Whereas the definitions in the literature are quadratics.

In the following proofs we shall assume r > 0, since the theorem is trivial
when r = 0. We shall refer to the propositions in parts (i) to (v) as “propositions
(i) to (v)”.

Proof of the necessity and sufficiency of (i). Suppose we are given that the inter-
actions of the rth and higher-orders all vanish, i. 2.5 that " log p; = 0if |j] >
r. Hence, by the inversion formula, log p; = di* - - - dy' X jw “I; where I; = 0
if |j| > r. Hence

1<r ()< <?(r) Em 7’8540

ddy - -+ dn log p; = 2 To...0, (1)0-+03, (530---

p(1),e e e,¥(r) Jv(1)0**dv(r)
—iy(1)d¥(1) =ty (r) v (r) . .

w.,(l') v PP w,,(")(' v(r ) ) Io...o],“)...o],(,_l)o

+v(1),e ¥ (r=1) Ty (1)s* 2 dw (r—1)
—iy(1)] iy (r 1) (g _ . .
~-'0wy(1')(1) »(1) ., ., w,(;—(i) 1)Iv (r-1) + F— Z F('ly(l) , oo ,Zy(r))

p(1)ye ¥ (r)
F(il'(l) y "0 iV(r—l)) + -

v(1),e 0¥ (r=1)
where we write F for a function, not usually the same function on each occasion.
Therefore

log p; = > F(iay, *+ 5 tw)
y(1), ()

where the complex parts of the functions can clearly be removed. Hence

1=5v(1)< <V (r)Sm
(14) pi = 11 F(iha, < ),
v(1),e e ep¥(r)

where the functions are positive. This proves the necessity part of (i). In order
to prove the sufficiency, it is enough, in virtue of the linearity of the interactions
as functions of (log p:), to suppose that log p; = F(41,%, -, ¢r), Where we
have selected the first » indices merely for the sake of simplicity of notation.
When |j| > r, one of the components j,41, ** + ,Jm , 82y J» , must be non-zero, so
that

2w log pi = 0,

and so
> wlog p, = 0 (|j| > 1),

as required.
Proof of the necessity and sufficiency of (ii). Write log p; = a, . If all the rth-
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order and higher-order interactions vanish we have in particular that
(15) Eailu-im wf‘jl e wfnmfm —_ 0,

whenever ji, -+ ,jrq are all non-zero. Take the (m — r — 1)-dimensional
inverse discrete Fourier transform with respect to jri2,jr+s, * - ,Jm, Which is
possible since these variables are unrestricted, and we get

(16) T uesn ol o3 = 0

LSO PSS |
(A #0,52%0, -+ ,jrs1 # 0;%r42, - -+ , im unrestricted).

Conversely Condition (16) implies Condition (15). The same argument could
obviously be applied to any subset of » + 1 “coordinates”, instead of the first
r + 1, and part (ii) of the theorem follows.

Proof of the sufficiency of (iii) for the case r = m — 1. Consider a 2 X 2 X
--+ X 2 subtable of size 2™, designated by (41,%1; - ; @m,im). For con-
venience in expressing the vanishing of the (m — 1)th-order interaction in this
subtable we introduce the notation 7,(0) = %,,%.(1) =4, (s=1, 2, ---, m).
Note that we are using the symbol 7, both as a functional symbol and as a par-
ticular one of its two values. We have

0,1
d1+...48
D (=1)t i g oo = 0.

5100 sdm
Consequently

0,1
81+ oo,
> (-1 ™ @y (51)ve i —1 By v

61"”'6"1—1
& ) 5
—_ - 1t timan o’
= 2 (=1 ™ @iy (b nrimet Bet)s im

81,0 rbm—1
Since the only distinction between the two sides of this equation is that the suffix
im on the left is replaced by ¢, on the right, and since 4, can be any integer from
0 to dn — 1, it follows that the left side is mathematically independent of 7, ,
and is therefore of the form F (4,41, -+ - , tm-1, m-1), Where, as before, we use
the symbol F to denote a function, not usually the same one on each of its oc-
currences. Now put ¢y = -+ = ¢y = 0. We get

>a':1"‘1.m = F(7:2, LY ,/im) + DY
+ F(ia, - yim2,tm) + F(ix, -+ ’im—1)°
The sufficiency of part (iii) of Theorem 3 now follows from that of part (i).
Proof of the necessity of part (iv) (and therefore of part (iii)). We are given
that the interactions of the rth and higher orders all vanish. Therefore, proposi-

tion (i) is true. A fortiori it is true for any assigned 2 X 2 X --- X 2 subtable
of size 2™. Therefore by the sufficiency of (i) applied to the subtable, we see that

(17)
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the rth and higher-order interactions (which are real) in the subtable must
vanish. This is true for each subtable.
Another proof of mecessity. Let ¢ = (e, -, em) Where

& =1ify =y ormor:--orvy
= 0 otherwise.

A typical rth-order (real) interaction in the subtable (i1,141; " ;%m,im) is
z, defined as

0,1
€101+ +epd,
z= Zs (=1)=% ™ 10g Diy (51),++vim () »

o
where, as before, (0) =41,4(1) =d1, +,im(0) = im, in(1) = in. We
wish to prove that # = 0. We have
z=dit - dy Z Ii(wr* vV &+ wf‘ij‘) coo (wptmim 4 w:f”’."‘)
J

where the factor w;**" = w;*** has a minus sign if » is one of », « - , v,41 and
has a plus sign otherwise. Hence the coefficient of I; vanishes if any of j,, , 7., ,
“++ ,Juy i80. But I; = 0if j has as many as r + 1 non-zero components. There-
fore x = 0, i.e., the rth-order real interactions vanish in any 2 X 2 X -+« X 2
subtable of size 2™.

Proof of the sufficiency of part (iv). For each 2 X 2 X -+ X 2 subtable of
size 2™, all interactions of orders r and higher vanish. Therefore, by part (ii)
applied to these subtables, the rth-order interactions vanish in each (r 4 1)-
dimensional 2 X 2 X --- X 2 subtable of size 2" Therefore, by the sufficiency
of part (iii) with m replaced by r + 1, we see that all rth-order interactions vanish
in each complete subtable of dimensionality » + 1. The sufficiency of part (iv)
then follows from that of part (ii).

‘Part (v) of the theorem is a trivial consequence of parts (ii) and (iv), so
that the proof of Theorem 3 is now complete.

We conclude Section 2. with some tests of significance of the null hypothesis.

Tests of significance for no rth-order or higher-order interaction within the wider
hypothesis of no sth-order or higher-order interaction. Suppose that we have an
ordinary (sampled) contingency table (n;). The principle of maximal condi-
tional entropy generates the hypotheses of no rth-order or higher-order inter-
action, for»r = 0, 1, 2, --- , m.— 1. Let us call these the hypotheses H, ; for
example, H, is the hypothesis of independence. For formal convenience we write
H,, for the hypothesis that states nothing at all. It is natural now to ask for
statistical tests for testing H, within H, when r < s. The case r = 1, s = m i
classical, and the case r = m — 1, s = m,m = 3, is the one treated by Bartlett
[1] and Roy and Kastenbaum [37].

We shall consider the chi-squared test and the likelihood-ratio test. For the
application of either of these tests we must first maximize the likelihood, or
equivalently maximize z = ) _;n;log p; , subject to the restraints I, = 0, |j| >
r,and O_; p: = 1. We now have a Lagrange expression of the form
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2omilogpi — 2oN; 2 w7 log (di -+ - dmpi) — N 20 ps
% J %

where this time \; is defined as zero if |j| < r, the opposite of what was done in
Example (vii). The conditions for stationarity are

(n/ps) = N+ 22N 0 /pi = X+ N/ps.
J

This gives us Api=n; — A\ A =n,,..., — di -+ dwho = 7,,..., = n_ 83y, Ap}
=nj — dy -+ du)\;, and hence p; = n)/n when |j| < r. These equations then
must be satisfied by the maximum-likelihood value of (p;), subject to no rth-
order or higher-order interaction, provided that the likelihood is maximised at a
stationary value.

If we write more explicitly, p{", we see that the rth-order sums of the np{”’s
are equal to the rth-order sums of the n;’s. (See the remark following Equation
(6).) This condition is so simple that it might well be capable of a simpler proof.
At any rate, it is necessary to adjoin to it the vanishing of the rth and higher-
order interactions, in order that the p{”’s should be determined.

By combining this result with Theorem 2, we have a curious duality connecting
maximum likelihood with maximum entropy:

THEOREM 4. The maximum-likelihood values of p;, namely p", subject to the
vanishing of the rth and all higher-order interactions, I; = 0 (|j| > r), are equal to
the maximum-entropy values of p; , subject to the rth-order sums of the np;’s being
equal to those of the n;’s, provided that the maximum likelihood is reached at a
stationary value of the likelshood.

The numerical problem of solving a set of equations, some linear in the in-
dependent variables and some linear in their logarithms, is one whose optimal
solution is by no means obvious. The work on the iterative numerical solution
of general sets of equations (see, for example, [21], [38], [43]) could be used; but,
in view of Theorem 4, our maximum-likelihood equations could be solved by
means of the iterative scaling procedure for maximizing entropy. (See remarks
following Equation (10).)

For the case r = 2, m = s = 3, i.e., for the testing of no second-order inter-
action in a three-dimensional table, our p{® agrees, for example, with those in
[37]. In order to find ${®, Roy and Kastenbaum [37] needed to solve (d; — 1)
(d; — 1) (ds — 1) simultaneous non-linear equations in as many unknowns,
Darroch [5] had ded; + dsdi 4+ dide equations, and Kastenbaum and Lamphiear
[25] produced an iterative procedure for solving the (dy — 1) (dz — 1) (ds — 1)
equations, by extending a method used by Norton [33]. Any one of these methods
could be used for solving our didyd; equations. For other values of r, s, and m,
iterative methods could presumably be devised for solving our equations, or
else Theorem 4 could be invoked and then an obvious generalization of the
iterative scaling procedure could be applied, along the same lines as Brown [3],
who however discusses only the case dy = dy = --- = d,, = 2. The matter
requires further thought and numerical calculation, possibly rather extensive.

Let
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pr=—22 n;log p"”
and
X = Z (ns — np{™ ) mp".

For testing H, within H, (r < s), the Neyman-Pearson likelihood-ratio sta-
tistic (see, for example, Wilks [41], p. 419) is u» — u. , and asymptotically has a
tabular chi-squared distribution having as its number of degrees of freedom the
sum of the products of the numbersd; — 1,d, — 1, -+ , dnn — 1, taken (r + 1)
at a time, plus the sum of the products taken (r + 2) at a time, - - - , plus the
sum of the products taken s at a time. In order to see that this is the number of
degrees of freedom we note that, for example, the value of pos,i;.--s,,,-..,, can be
deduced from the values of pi iyigeeivsreern, (1 £ 91 £ di — 1) and of p,4p45eees,
,eeers 3 and that the value of py,...s,,,...,, can be deduced from those of

p0i2i3~-~i,,---, ) pi10i3“'i71“'1 ) puia'-'i,-/“'/ (1 .é ?:1 é dl - 1’ 1 é 2.2 é d2 - 1),

and so on. If then we are given all restraints of order » — 1, the restraints of
order r are determined by

p,...,;,(l),...,,'y(2),...,...,...,,;',('),...,...,

where none of 7,q) , %y , * * * , tv is zero, and where1 < »(1) < »(2) < --- <
v(r) Em. I di=dy= -+ = d,; = 2, the number of degrees of freedom is

() + (o) + ()

The chi-squared statistic is x; — x2 and has asymptotically the same distribution
as the likelihood-ratio statistic. Note that, for the application of the likelihood-
ratio test, tables of 2n log n are useful. A table which I had computed for this
purpose, for n = 1(1)10,000, is included in [28]. The other Ku’ paper [27] is also
somewhat complementary to the present paper.

3. Further Discussions.

New relevant papers. After this paper was submitted for publication, two
relevant papers appeared (Plackett [35], Darroch [5]) dealing mainly with three-
dimensional contingency tables. Plackett, following Woolf [42], gives a chi-
squared test for zero second-order interaction in a 2 X 2 X ¢ table. It is easier
to compute than our chi-squared statistic, but it is not known which tends faster
to its asymptotic distribution. Darroch gives the likelihood ratio test for no
second-order interaction in a three-dimensional table, and is consistent with the
test given above. Note also that Section 3 of [5] contains the conjecture that if,
in a three-dimensional table, we have a complete and consistent set of second-
order restraints (i.e., all marginal totals), then the hypothesis of no second-order
interaction leads to a unique set of cell probabilities (p;). Provided that the
restraints are not “only just consistent’’, the truth of this conjecture follows
from our Theorem 2, combined with the proof of Theorem 1, and with part
(iii) of Theorem 3. In fact, in an m-dimensional table with a complete set of
rth-order, restraints, the hypothesis of the vanishing of the rth and all higher-
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order interactions leads to a unique set of cell probabilities, when the restraints
are consistent but not only just consistent.

Darroch states that there is little practical interest in interactions of higher
than the second order. This may be less true now that there is a definition avail-
able. For any given (sampled) contingency table in four or more dimensions,
we are now in a position to test the hypothesis of the vanishing of higher-order
interactions, and it would be dangerous to assume that they vanish without
applying a test. If the tests do not reach significance, owing to the smallness of
the sample, or otherwise, then one might be prepared to accept the hypothesis
of the vanishing of the rth and higher-order interactions. Then one could apply
the inverse discrete Fourier transform (see Equations (13) and (12)) in order
to make estimates of the p.’s, which would probably be better than the maxi-
mum-likelihood estimates. The corresponding smoothing idea was proposed for
factorial experiments by Good [10].

Relationship between analysis of interactions and latent class analysis. L. J.
Savage suggests,’ in a private communication, that the analysis of interactions
in contingency tables, as described in the present paper, might be regarded as an
alternative to latent class analysis, in that both forms of analysis attempt to
approximate expression of multidimensional contingency tables by means of
relatively few parameters.

Relationships between maximum entropy, interactions, and Markov chains. Let
p; be the population frequency (probability) of the m-plet < in a stationary and
ergodic Markov process of order m — 1, with discrete time and a finite alphabet
of d letters. The numbers p; can be regarded as entered into an m-dimensional
population contingency table having marginal totals of various dimensionalities
less than m. Some of these marginal totals will be probabilities of u-plets with
u < m; others will be probabilities of what we shall call split u-plets, such as
Diysigsrisiz--inys » Where there are precisely u suffixes which have not been summed
out, i.e., which are not denoted by acute accents. The marginal totals are dis-
tinguished from those of a general m-dimensional population contingency table
in that there are additional conditions of consistency, namely that p,s...q,
= Piyerip, , for all 43, + -+, ¢p.. If the process were of order only m — 2, the
marginal totals would satisfy the further consistency conditions, relating to the
split (m — 1)-plet population frequencies:

Pirvigeovin = 20 (Pireerim—y Digewvin/ Pigereimy)
iz

etc. We can then derive the following result:

THEOREM 5. Given an ergodic process with discrete time and a finite alphabet,
and given that its (m — 1)-plet and split (m — 1)-plet population frequencies are
consistent with the hypothesis of Markovity of order m — 2, then the hypothesis
generated by the principle of maximum entropy is indeed that the process is of order
m — 2.

1 Both he and L. A. Goodman made a number of other useful comments concerning the
manuscript, which I have taken into account.
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Proor. Consider the hypothesis that

Piyervim = Diyeevima piz"'im/piz"'im—l )

for all4; , - -+, im . These m-plet probabilities form a set which is consistent with
the given (m — 1)-plet probabilities, if these are given. Moreover, by part (i) of
Theorem 3 this hypothesis is the one that is generated by the principle of maxi-
mum entropy applied to the m-dimensional table. We can now apply the same
method to (m + 1)-plets, (m + 2)-plets, - - - in turn, and we obtain the null
hypothesis that all m’-plets, for m’ = m, have the probabilities required in the
statement of the theorem.

Strictly speaking, Theorem 5 should have been stated separately for the cases
where the (m — 1)-plets frequencies are given or are not given. When they are
not given it is the principle of maximum conditional entropy which is strictly
relevant.

Presumably Theorem 5 would remain true for an enumerable, or even for a
non-enumerable alphabet.

The naturalness of our definition of interaction is supported by Theorem 6
below.

Let the span of a vector be defined as the largest number of consecutive
components such that all the components to the left and right of these vanish.
For example, a zero vector has span zero whatever its dimensionality, and the
span of (0,0, 5,0, 1, 0, 0) is 3. Then we have:

TuEOREM 6. If a process is Markovian of order m — 2, then I; = 0, whenever the
span of j is m or more.

Proor. We define the transition probability g;,...;,_, as the probability that a
letter is %,—1 given that the previous (m — 2)-plet was (41, - -, tm—2). Let

Qiyevnigg_g = log Piyeoeim—g s bil....;m_l = log\q,-l...,-m__l .
We have
Piyigeevimar = Digeevim—g Lirorvim—y Qigeovim *° " izgoccimypt s
whenever [ = 0. It follows that, if w = exp(2wi/d),
Liveonmrs = 2o A@iin s bty + Bigroi 70+ F D _gerinr)

B

i1f1+--'+im+tim+x}

w
—_ Z w":m—ljm-l+-~-+im+lfm+l Z aiy-'im_z wi1j1+-..+1'm—-2im—2
im=1'""Tm4l 10 im -2
+ E wimjm+...+im+lfm+l Z bz'l-nim_l wt’lil+...+i,,,_1jm_1
ime tmal Ty tm—i
+ Z wixJ'1+im+1im+1+im+2im+z+-u+‘m+xim+z

Slimatr imal

Sadat e tind d1d1teHir 41141
cD0 biges, @I L ST A 191+
.‘2'...,."" ‘l"'€l+l

z : b, X w’il+‘2il+2+-~+im+lim+l
igert imgl ’

142 tmyl

and this vanishes if neither /i nor j.4: is zero.
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Theorem 6 is true even if m = 1 or 2, provided that “Markovity of order 0”
is interpreted to mean ‘random’ (independence), and “Markovity of order
—1” to mean “perfectly random” or ‘“flat-random” (independence and equi-
probability).

I have not yet proved the converse of Theorem 6.

Contingency table with a small sample. Deming et al ([40], [6]) considered the
problem of estimating population frequencies in a contingency table when the
marginal population frequencies, (p;,) and (p,;) are known, and at the same
time there is a small sample (n;;) of the interior, where > imi; = N. In the
present paper we have assumed the sample size N to be zero when considering
contingency tables. They proposed a least squares method, in which

2 (pi — nai/N)?/mi;

249

was minimised subject to the restraints
;pii = Dir Z‘pii‘: Dis-

They also considered extensions to multidimensional contingency tables. Al-
though their method has been useful for census work, it is clear that some modi-
fication is required when some of the n;;’s vanish. Their method would lead to
pi; = 0 for such n,;’s, whereas ours, with N = 0, leads to p;; = p:,p,;. The
method of Good [13], for the case where N > 0, would lead to a compromise
between these two estimates.

Another possible method of effecting this compromise, perhaps applicable to
multidimensional tables, could be obtained by combining maximum likelihood
with maximum entropy. The latter refers to the situation where we have an
infinite sample for some marginal distributions and zero sample for the complete
distribution. When there is a non-zero sample for the complete distribution, it is
reasonable first to test the null hypotheses that are thrown up by the principle
of maximum entropy. If these are rejected, then we are faced with an estimation
problem. ,

A possible approach, which however is difficult to justify, would be to maxi-
mize some linear combination of the entropy and of the log-likelihood, such as
the sum. For a two-dimensional contingency table, with assigned marginal
population frequencies, this leads to the rule: maximize

2= (ni; — pi;) log pis
subject to the restraints. The result would presumably be to estimate p;; some-
where between p,,p,; and n,;/n, and in this respect would resemble the methods
of Good [13].

The above method is equivalent to the selection of the distribution of maximum
final credibility density, assuming the initial density proportional to the ex-
ponential of the entropy.

This rule for an initial credibility density is not consistent, for a multinomial
distribution, with rules that have been previously advocated, since it gives a
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density proportional to [ [p7?¢; whereas previous rules have been of the form
11»# ([34], p. 308, and references in [15], p. 862). Previous suggestions have not
been mutually consistent. One of the most interesting is Jeffreys’ invariance rule
[24], for which « = — }. We conclude this paper with a further comment con-
cerning this rule.

Another possible method of generating null hypotheses. Jeffreys’ invariance rule
assigns a possible credibility distribution to a parameter space. It would be
reasonable to think of this credibility distribution as appropriate for the non-null
hypothesis and to select null hypotheses at stationary values of the invariant
density. For the simplest example, a multinomial distribution, the null hypo-
thesis generated by this principle of stationary invariant density is the “equi-
probable” or “flat” multinomial distribution; but I suspect that this principle
seldom throws up the same null hypotheses as the principle of maximum en-
tropy; for example, it does not do so for a 2 X 2 contingency table.

Orthogonal and unitary interactions. It is possible to use matrices more general
than (%) in order to define interactions with many of the properties of 7; . This
is exemplified by the following duality theorem which generalizes Theorem 4.
Its proof is omitted in order to save space.

THEOREM 7. Let (w;;) be proportional to.a symmetric unitary matriz (or to a
real symmetric orthogonal matriz) for which wo; = 1 for all j, and let

g; = ;w,-,-logp,-.

Let R be a class of values of j containing j = 0. Then the maximum-likelthood
values of pi, subject to 9; = 0 when jzR, satisfy the equations npf = nj when
j € R, where pi = Do wiipi, nF = D.i wim; . Dually, the maximum entropy
values of p:, subject to npf = nf for je R satisfy the equations 95 = 0 when
JjeR. ’

Further; the equations npf = ni when |j| < r are equivalent to the proposition
that the rth order sums of the npJ’s are equal to those of the n.’s, provided that (i)
wij 18 @ function of the m products 41, aJz, =+ *  tm¥m ; 0nd (ii) (wi;) s pro-
portional to a unitary matriz. ,

The possibility of generalizing our original definition of Fourier interactions
was suggested by L. A. Goodman (private communication) although not in
connection with the duality theorem.
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