PROPERTIES OF GENERALIZED RAYLEIGH DISTRIBUTIONS

By L. E. BuumensoN' anp K. S. MILLER
Columbia University and New York University

1. Introduction. Some years ago we defined generalized Rayleigh processes
[6], [7] and considered some of their many properties. Briefly, if z;, 1 < 7 < n,
are Gaussian variates and #* is the sum of their squares, then we called 7 a gener-
alized Rayleigh random variable. Besides the references in [6], [7] we have noted
other investigations in this direction [2], [8]. In the present paper we wish to
continue our study of Rayleigh distributions.

Our results exploit the methods employed in the theory of linear vector spaces
and are of two types. The next three sections deal with explicit formulas; the
last two sections with symbolic representations. In Section 2 we compute the
joint p-dimensional Rayleigh distribution for a certain class of covariance
matrices. The result is expressed in terms of modified Bessel functions of the
first kind, [ef. (2.1)]. In Section 3 we compute the distribution of the inner
product of two Gaussian vectors. The result is expressed in terms of a modified
Bessel function of the second kind, [cf. (3.1)]. In Section 4 we compute the
distribution of the difference of squares of norms of two Gaussian vectors. The
result is expressed in terms of Whittaker functions, [ef. (4.1)]. Precise definitions
and assumptions are made in the theorems leading to (2.1), (3.1) and (4.1).

The problem of computing the p-dimensional Rayleigh distribution in a use-
ful form for arbitrary covariance matrices appears intractable. However we do
obtain symbolic (operator) forms for the p-dimensional distribution for both the
biased and unbiased cases, [cf. (5.1)]. These results seem to be of theoretical
value in related investigations. In the final section, Section 6, we obtain a
symbolic form for the density function of a Rayleigh variate when the variances
of the Gaussian components are not necessarily equal, [ef. (6.1)].

We are indebted to the referee for pointing out certain additional references,
as well as for making the observation that the theorems of Sections 2 and 3
could be approached by starting with the Wishart distribution.

2. The p-dimensional distribution. Let Y,, ¥;, -+, ¥, be p-dimensional
column vectors which are independent and identically normally distributed
with mean zero and covariance matrix M. Let X, be an n-dimensional vector
comprised of the kth components of the Y;, 1 < j < n. Then under certain
restrictions on M we shall compute the joint p-dimensional distribution of the
norms of the X;,1 £ k £ p.

A word on notation: Primes will always denote transposes, that is, row vectors.
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904 L. E. BLUMENSON AND K. S. MILLER

Thus XX is the inner product of X and Xy , and |X,| = (X7.X;)? is the norm
of X, ko .

If n 2 p, then A = Y 7, YV;¥; has a Wishart distribution ([1], page 157)
and our problem can be formulated as finding the joint distribution of v, vz,
.-+, v, where v, = a} and @i, 1 < k = p, are the diagonal terms of A. How-
ever, we believe our approach below is simpler.

The precise theorem we shall prove is:

TaeoREM. Let Yy, Yo, -+, Y, be p-dimensional column vectors which are
independent and identically normally distributed with mean zero and positive
definite covariance matriz M. Let W = M~ = (Ww )1k <p have the property
that wi = O for |k — k'| > 1. Let r; be the norm of the n-dimensional vector X,
composed of the kth components of the Y;. Let R = {ry, re, -+, rp} be the p-
dimensional vector of norms. Then the frequency function g(R) of R is

IWlﬂ/2 (n—2)/2 n/2

g(R) = W("W 1 Tp €Xp (_wppr‘;/2)
p—1
(2.1) X kHl [owrora] ™1 exp (—wiark/2) I nsyo( (Wit Tarasa)),

, n20,1<k=<p
g(R) =0, otherwise.

Before proving this theorem we would like to make two comments:

(i) The condition wy = O for [k — k’| > 1 is not unreasonable. For example,
it occurs in the important practical case where M is the Toeplitz matrix
()\Ik—k I)lgk,k'gp .

(ii) If wix41 = O for some k, say k = a, then the term |wa,ar1| ™" > T (n_2y/2*
(|wa,at1|Taret1) in (2.1) will be replaced by

(2.2) (PaTayr) 212 /207P1D (1 /2).

We now consider the proof of our theorem.
Proor. Let f, be the g-dimensional normal frequency function. Then

fnp(Yl’ Y, y "t Yn) = ’IiIlfp(Yl)

(23) - I;I1 [1/(22)""| M ]!] exp (—3Y/WY;)

P r—1
= [1/(27)”/2IM|”/2] exp [—% kX; wklekl2 - kX; 'wk.k+1XliXk+1]

since wyr = O for |k — k'| > 1.
Since 7 = |Xi| we may write the marginal distribution g(R) as

0B = [ fp¥i, Yo, o, V) dovdos -+ doy

(2 4) llé};‘,g;rk
o |Wln[2 P 2 p—1 f d
= — —1
PEL exp [—3 1; wkkrk][kLll Qi —— J1



GENERALIZED RAYLEIGH DISTRIBUTIONS 905

where
Q= f exp (— Wk p1 XrXp1) dogs , 1=k=sp-—1
| Xpp1l=rgp41

and doy,, 1 < k < p, is the element of surface area. (In the integral @; choose
X, as the polar axis.) Then

(2-5) Qk = [lwk.k+1|rk]—(”—2)/2(27r)”/27' 1?—{-%1 (n-2)/2(|wk,k+1|7‘k7‘k+1),
while
27"t
26 f doy = 2011
(26) xien O T

is just the surface area of an n-dimensional sphere of radius r;. Substituting
(2.5) and (2.6) in (2.4) leads to (2.1).

3. Distribution of the inner product. Let X and Y be Gaussian random vectors.
Under certain restrictions we shall compute the probability density function of
the inner product X’Y. This slightly generalizes a result of Wishart and Bartlett
[11] obtained by a more complicated argument using characteristic functions.
If n = 1, we have simply the distribution of the product of two Gaussian random
variables.

THEOREM. Let X = {x1,22, -+, 2.} and Y = {y1,y2, ** , Yn} be n-dimen-
stonal random vectors with means zero. Let the two-dimensional vectors {x;, y;},
1 £ j £ n, be independent and normally distributed with positive definite covariance
matrix M = (M )1<k4 <2 (Endependent of §). Let z = X'Y be the inner product
of X and Y. Then the one-dimensional frequency function h(z) of z s

Izl (n—1) IZe—wmz
1['1/2P (n/2)2(”_1)/2|M]§(m117n22) (n—D)/4
where W = M = (ww)1<ep <2 and K, is the modified Bessel function of the
second kind and order v.

Proor. Let r = |X|and s = |Y|. Then z = X'Y = rscos ¢1,0 < ¢, < m,
where ¢, is the angle between X and Y. Following the techniques used in [6]
we may show that the joint distribution g(r, s, ¢1) of r, s, ¢1 is

g(r, s, ¢1) = [1/2" M |"*T' (n/2)T ((n — 1)/2)T($)](rs)(rs sin ¢1)"

X exp [—3(wur® + wes’) — wirs cos ¢4

(31) h(z) = K(n—-!)/2(|zl('w11w22)i)

Now make the change of variable z = rs cos ¢1, £ = rssin ¢1, ¢ = r with
Jacobian J = §‘“1(z2 + Ez)—*. Then the marginal distribution of z is

Mo = [ dt [ delolr,s,40) = (/2| MPT(n/2)T((n — 1)/2)T (@)l

X f dsfo deg" % exp (—wnt/2) exp [—3wn(2 + £)¢7.
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Using a simple transformation of the Gamma function we arrive at

—wjg2
e 12

20=D/2| M|™2T (n/2)T(
From [10, page 185] we infer

® v/2
[ e (—a — o) as = (B) K268, @b >0,

W) = o |, £ e (=3t + s )] dy.

Thus

e
=DM (1] 2) D) ()

which immediately reduces to (3.1).

One could also approach the above problem by starting with the bivariate
Wishart distribution; but we believe that our solution is easier to visualize and
manipulate.

4. The difference of squares of norms. Let X, and Y, be normally distributed
random vectors. Then under certain restrictions we shall compute the probability
density function of |X,|> — |¥m|". This problem has been considered by Gurland
[4]. _

TuEOREM. Let X, = {%1, @2, -+, &} and Yo = {y1, 42, -+, Ym} be inde-
pendent and normal random vectors with means zero. Let Var x; = @, 1 < j = n;
Var 4 = ¥, 1= k < m. Then the frequency function of t = |Xal” — |Vl 45
o(1) = || m9M exp [ 3t(1/® — 1/%)18™ ¥

22)"42¥)"4(® + ¥) AT (n/2)T(m/2)]}
~ I‘(m/2):|i* 1
X [X DT i1 /0 4 1/2)

where p = (n — m)/4, v = (n + m — 2)/4 and W,,, is the Whittaker function.
The plus sign ts taken if ¢ > 0 and the negative sign if t < 0.
Proor. The density function of u = | X" is

_wlzzlzl (n—1)/2 3
K(n—l)/2( |z| (’wu'wzz) )

h(z) = 3

(41)

(4.2) h(u) = [1/(28)"T (n/2)]u" %%, u=0
and of v = |V.[,
(4.3) k(v) = [1/(2%)™T (m/2)p" %™, v 2 0.

Thus the first order probability density function ¢(t) of ¢ may be written ¢(¢) =
I8 h(w)k(u — t) du, t < 0, and ¢(¢) = I8 k(v + t)k(v) dv, t > 0. Substituting
(4.2) and (4.3) in the above formulas and recalling the definition of the Whittaker
function, ([5], page 90) leads to (4.1).

For certain special values of m and n, for example, n and m both even, (4.1)
reduces to an elementary function. If n = m, then ¢(¢) is essentially the modified
Bessel function of the second kind and order (n — 1)/2.
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6. The p-dimensional biased distribution. In these last two sections we shall
show that if one extends the domain and range of functions to include the
space of operators on ordinary functions then certain rather intractable problems
can be solved in an elegant form. Our approach is to start with some simple
operation, 4, (for example, a differential operator) and consider a function to
be “known” if it can be expressed in the form f(A)g where ¢ is an ordinary
function and f(A4) can be “easily” computed (for example, as a power series).
We refer to f(A)g as a “symbolic expression”; and the main problem is to obtain
f, 4 and g in as simple a form as possible.

THEOREM. Let Y1, Ys, -+, Y, be p-dimensional random vectors, independent
and normally distributed with mean vector EY; = A;, 1 £ j < n, and common
covariance matriz M. Let M be positive definite and set W = M = (W) 1<k < -
Let r, = | X3| be the norm of X1, , 1 S k < p, where X}, 1s the n-dimensional vector
composed of the kth components of the Y;. Let R = {ry, r2, -+, rp} be the p-
dimensional vector of norms. Then a symbolic expression for the frequency function
g(R) of R 1s

n »
(5.1) g(R) = exp [—}% Z; A;'WA:']{H 12Dy " o a2 (20D}) YR (T) | 7=0
= = .
where

W(T) = 2%2M + T|™* exp [} Z Ar(2M + T)'TW A,
k=1
(5.2)

T = (40w )1k <0
Dk=6/atk,__ 1§k§p,

and I, is the modified Bessel function of the first kind and order v.
Proor. Using the notation of Section 2,

L
9 = Gy

) f exp [—3 Z (Y; — Aj),W(Yj — A)]doy -+ dop
| Xp|=rg j=1

(63) . lsksp
_ P ™
- 2m)ne/2

‘ »
‘ '/;x I=1 exp [—3 Z wii (1 Xy — Bk)’(TjX,- — B)ldoy -+ doy
kl=

k=1
1<kgp

where B, is the mean of 1.X,, 1 < k =< p, and we have normalized the X;

vectors.
We assert that the integral in (5.3) is a function only of 75, 5, +++, 5.
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Assume this for the moment. Then ( 5.3) has a series expansion of the form

(5'4) g(R) — lWln/2 exp [—%Z};l A;-WAJ.] L bkl."wky ﬁ rz'kj.;,,._l

(2m) i e I - S

where the b’s do not depend on the r’s. If Re [s;] > 0,1 =j =< p, then from (5.4)

0

00 b4
f dry -+ f dr,g(R) exp [—Z s,'rﬁ:l
0 0 J=1
_ W™ exp [—3 Dp Aj WA, i B I”II‘(k,-+n/2)
1 P

22(2m) "o 2 [S[n/2 by gm0 e k! S'Jf:'

(5.5)

where S = (8k5kk')1§k.k’§? . Also

0 0 bl yd
L dry - - /.; drp,g(R) exp [—Z Sj"';] = Eexp [-—Z 8"7'?]
j=1

=1
= E exp [-—kzl Y;ﬁSYk] = ]fI1 E exp [—Yi8Y3]
— =
— |Sl—n/2|2M + S—ll-n/2

-exp [—% E A;WA; + -;-kgl An(2M + S“)"S‘IWAk].

(5.6)

Equating coefficients of si* --. §;* in the expansions of (5.5) and (5.6)
we obtain

w n/2 D n —1 akl.‘.....'.kp
GT) o b, = [H r (k,- + 5)] st D
where h(T) is defined by (5.2). Substituting (5.7) into (5.4) we obtain the
expanded form of the symbolic expression (5.1).
We now prove the assertion concerning the form of the integral in (5.3). Let
1 = 8 = p. We shall show that the integral depends on 75 through r? only. Ex-
panding out the sum in the exponential of the integrand we obtain

T=0

v
’g‘:l wii (s Xx — Bi)'(r; X; — B;)

i
= wgers + 2rs X5 [—waaBa + Z; wig(r; X; — B,-)] + Us
i
where Uy does not involve 75 or Xj . But if C is any n-dimensional vector which
is not a function of 75 or X;, then

9 n/2 —(n—2)/2
[ exp (13 X5C) dog = (2m75) ,,I_C:l Tw-22(r8|C|)
1Xpl=1 78

which is a function of 75 alone. This proves the assertion.
The unbiased case is simply obtained by letting 4; = 0,1 < j < n, in (5.1).
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6. Weighted Rayleigh distribution. The variate r has a weighted Rayleigh
distribution if » = |X| where X = {z1, %2, - -, Z»} has an n-dimensional normal
distribution with mean zero and covariance matrix M = (M5 6ur)1gkr <n -
This problem has been discussed by Gurland [4]. Techniques for the numerical
evaluation of the density function and the distribution function of r are dis-
cussed in [3]. We now prove the following theorem:

TaEOREM. A symbolic expression for the frequency function p(r) of r is

(6.1) p(r) = 27\ DT o py5(2r DYR(E) |umo

where W = M, D = d/dt, h(t) = |E + (t/2)W| ™ and E is the n X n identity
matric.
Proor. By definition

_ W _iewx
p(r) = j;x'm (2”_)”/26 do

and following the development in Section 5 we may also write

(6.2) p(r) = O (a/kl)r*
k=0
Hence for Re [s] > 0,
* © —k—n/2
(6.3) Ee™" = f () dr = > a. T (k + n/2)s .
0 k=0 2k!
Also

(6-4) _ A mg fw —g22 —m? 22/,
T =1 2my? —ooe e do

= (28)™ W |E + (28)"'W|
From (6.3) and (6.4) we find that
(65) @ = 27Nk + w/2I WP/ E + (¢/2)W]7 fmo -
If we substitute (6.5) in (6.2) we obtain the expanded form of (6.1).

Acknowledgment. The research reported in this paper stems in part, from
a project sponsored by the Advanced Research Projects Agency of the Depart-
ment of Defense and is directed by the Rome Air Development Center, Air
Research and Development Command, U. S. Air Force under Contract AF
30(602)-1971.

REFERENCES

[1] AnpERsON, T. W. (1958). An Introduction to Multivariate Statistical Analysis. Wiley,
New York.



910 L. E. BLUMENSON AND K. S. MILLER

[2] Forp, F. A. J. (1959/1960). A note on the paper of Miller, Bernstein and Blumenson.
Quart. Appl. Math. 17 446.
[3] Grap, A. and Soromon, H. (1955). Distribution of quadratic forms and some applica-
tions. Ann Math. Statist. 26 464-477.
[4] GurLAND, JouN (1955). Distribution of definite and of indefinite quadratic forms.
Ann. Math. Statist. 26 122-127.
[5] MaeNUs, W. and OBERHETTINGER, F. (1949). Formulas and Theorems for the Special
Functions of Mathematical Physics. Chelsea, New York.
[6] MiLLER, K. S., BERNSTEIN, R. I. and BLuMENsoN, L. E. (1958). Generalized Rayleigh
processes. Quart. Appl. Math. 16 137-145.
[7] MiLLER, K. S., BERNsSTEIN, R. I. and BLuMENsoN, L. E. (1963). A note on the paper
generalized Rayleigh processes. Quart. Appl. Math. 20 395.
[8] Parxk, J. H. (1961). Moments of the generalized Rayleigh distribution. Quart Appl.
Math. 19 45-49.
[9] RuseN, HAarRoLD (1960). Probability content of regions under spherical normal dis-
tributions, I. Ann. Math. Statist. 31 598-618.
[10] WaTson, G. N. (1952). A Treatise on the Theory of Bessel Functions (2nd ed.). Cam-
bridge, New York.
[11] WisuARrT, J. and BarTLETT, M. S. (1932). The distribution of second order moment
statistics in a normal system. Proc. Cambridge Philos. Soc. 28 455-459.



