SOME APPLICATIONS OF THE JIRINA SEQUENTIAL PROCEDURE TO
OBSERVATIONS WITH TREND

By Sam C. SAUNDERsS

Boeing Scientific Research Laboratories

Summary. Assume that each random variable of a sequence had a density
which is a Pélya frequency function of order two. To this sequence we apply the
Jifina sequential procedure to determine a tolerance interval. In this paper we
find some sufficient conditions on the type of trend permissible for this sequence
which enable us to show that when the Jifina procedure is used the sampling will
stop sooner and the tolerance interval cover more of the population (in
a stochastic sense) than would occur in the case without trend.

Similar considerations are shown to hold when the sequences of observations
have densities which have non-decreasing hazard rates.

1. The Jifina procedure. Let us define the Jifina procedure when it is applied
specifically to the real line and introduce notation to be used subsequently. Let
X;, X», -+ be a sequence of continuous independent real random variables
(r.v.’s) not necessarily identically distributed. The triple (», k, D) defines a
Jifina procedure where ¢, k are positive integers and D is a sequence of functions
determined in the following manner:

For given n = g let

(1‘1) Xl,n < X2,n < A < Xn',,,

be the ordered r.v.’s determined almost surely by X;, ---, X,, and for nota-
tional convenience write X" = (Xi, ---, X,). Then for each integer n = #
we have D defined by

(1.2) D(X") = Ufz: Xy, <2 = X4

(¢

where the union is over a preassigned set of exactly (n — %) ¢’s with the pro-
viso that

(1.3) D(X™) c p(x™") n=.
We continue sampling until the stopping event
(14) B(X"™) = [D(X") = D(X"*)]

occurs. In view of this definition we have also
. .
(1.5) B(X"™) = ) Xoyj e DX,

Let N(X) be the random sample size associated with D which we define as
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the number of observations n drawn when B(X") occurs for the first time. That
is, letting superscript ¢ denote complementation,

n—1
(1.6) [N(X) =n] = N B(X") N B(X").
=
Thus D(X"®) is the Jifina sequential region determined by #, k, D. If P is
a fixed probability measure, the coverage of the region (with respect to P) is the
r.v. on the unit interval defined by

(1.7) Q(X) = PID(X"™)].

The case where the X’s are identically distributed has been studied previously,
and it is known that

(1) PrIQUD) 2 8] = (1= o) exp [ —n 2874

for which approximations are known and tabulations have been made. Further
it is known in this case that we have the very good approximation with asymp-
totic equality as k — o

(1.9) EN(X) = 5 + kS, nz1

where S, is a constant which depends only upon 7.
In this regard one is referred to [3] and [4] for a discussion of the properties
of (1.8) and to a translation of Jifina’s original paper in [2] for its development.

2. Application to life testing. Suppose we are observing the life lengths of suc-
cessively produced components with the initial manufacturing refinements and
design improvements being continually incorporated in their construction. We
assume the components are being improved but the degree of improvement is
not known exactly or cannot be quantified in terms of the life length in service.
We also assume that the degree of improvement of the component in the produc-
tion run will eventually reach a plateau of development beyond which it will
not progress.

Suppose we apply the Jifina procedure to this sequence of observations. For
instance, we might agree to stop sampling when we have obtained for the first
time 15 observations which exceed the minimum life length obtained in the
sample. From the tables and results in [3] we know that if in fact there was no
trend, i.e., the life lengths were not being improved, tlien we could expect to stop
in 27.7 observations and we would have a distribution of the coverage @ which
has the values given in the display below. On the other hand, if there is in fact a
very decided improving trend, it is not inconceivable that we could stop early,
say less than twenty observations. Suppose for the sake of comparison we con-
sider the coverage @; of the minimum of a fixed sample of size n = 25 in the
case of no trend. Now @, has distribution Pr[@, = 8] =1 — 8"
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Pr (@ = z) Pr(Q = x)
r=.8 .99 99
z=.9 93 97
z = .95 72 73
z = .99 22 24

It is the purpose of this note to set out certain conditions under which in
the case with trend the coverage is improved even though the sample size is de-
creased. The fact that under certain conditions the coverage of a sample with
trend is stochastically larger than the sample without and the sample size is
stochastically smaller for a sample with trend than a sample without is the
rationale for the use of the Jifina procedure.

It should be noted that these results do not state the conditions under which
the Ji¥ina procedure is superior to a non-sequential procedure. Exact results in
this direction would depend upon making explicit enough assumptions about the
trend that the distribution of coverage and the expected sample size can be com-
puted and compared for the two procedures. The results we have merely suggest
the superiority of the Jifina procedure in the case of trend.

We now state more precisely our contention.

Let Yy, -+, Ya, -+ be a sequence of independent non-negative r.v.’s, which
we may regard as representing life lengths, with Y, having continuous distribu-
tion F,,n = 1,2,3, -

We assume that Y1 Yz -+, the inequalities meant in the stochastic sense,
which is equivalent to
(2.1) FizF, =z

Let X;,---,X,, --- be a sequence of ihdependent r.v.’s on the positive real

line indentically distributed with continuous distribution F, and we further
assume that lim,.. F, = F.

It follows from the above assumptions that there exists a sequence of order
preserving transformations 7, 72, - - - such that 7,(Y;) = X where we mean
stochastic equality to a r.v. X with dlstrlbutlon F, that is, F; = Fr;. It further
follows from (2.1) that =, = 740 ¢ = 1, 2,

We assume additionally that the functlons 7 are differentiable and
rn = 1':.,.1,'5 =1, 2, -

We make the intuitively appealing assumption:

Both the X’s and the Y’s have an increasing hazard (failure) rate.

DEerFINTTION. A distribution F with density f is IHR iff 6 = f/(1 — F) is non
decreasing. Under the same condition we say the density f is IHR. In either case
a density exists and we say the random variable has a (weakly) increasing
hazard rate.

We do not attempt to justify this assumption but it is & common one. We
now state
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TuroreM 1. If the JiFina procedure (1, k, D) is applied to both the X and ¥
sequences where D(X") = [Xia, ®], then the random sample size Ny and the
coverage with respect to F, say Q(Y), for the Y sequence are, respectively, stochasti-
cally smaller and larger than the sample size Nx and coverage with respect to F, say
Q(X), associated with the X sequence.

The proof will appear as a consequence of the general results to follow.

3. The main result. Let X, -+, Xn, - - - be independent random variables
on the real line with X, having distribution F, . Let ¢ be an order preserving
transformation, i.e., continuous and strictly increasing, and for some fixed integer
m we define

Y, = i(X; i=1,m
3.1) i i) J

[
=
»

Yoy = Xt J

Let us write {(X") = (tXi1, - - - , tXa) for convenience.
Let D be a Jifina sequential tolerance function as defined in Part 2 with given
parameters 7, k. We make the assumption that

(3.2.1) D(X™) = D(X™)]
and ’
(3.2.2) {D(X™)] D D(Y") D D(X™).
We have
Lemma 1. The stopping events are invariant under i, t.e.,
(3.3) B(tX") = B(X™).

Proor. This follows immediately from (2.6) and (3.2).
Lemma 2. Always

(3.3.1) B(X"*) < B(Y"") n=1,2 .

Proor. We have three cases (i) n 4+ &k < m, (i) n £ m <n + k, (iil) m < n.

Case (i): By (3.3) we have B(X"™) = B@X"*) = B(Y™).

Case (ii): By definition B(X"**) = [D(tX") = D(1X"*)], but by (3.2.1)
D(@X™*) D D(Y™**). Thus since D(tX") = D(Y™), we have B(X™**) which
implies B(Y™*).

Case (iii): Now B(X"**) = ’n1 [XavieD(X™)] by (2.7), but D(Y") D

k k
D(X") by (3:2.1). Thus B(X"™) © | [Xn+s e DY) = N Wass eD(Y™)].

We now have quite generally

Turorem 2. Let N(Y) and N(X) be the random sample sizes for the JiFina
procedure applied to the sequences Y1, Ya, -+, and X, Xz, - -+, respectively,
defined above. Then N(Y') is stochastically smaller than N(X).

Proor. By (8.3.1) we have B(X") c B(Y™). Hence taking complements we
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thus have
(3.3.2) n B°(X") o n B(Y%),
=1 =1

where B(X*) = ¢ for ¢ < 9 + k. Thus we have [N(X) = n] D [N(Y) = n],
which proves the result.

We now must discuss more specifically conditions under which we can have
Q(X) stochastically smaller than Q(Y).

DEFINITION. A non-negative function f is a Pélya frequency of order 2 (PFy)
iff f(z) = ¢ where ¢ is convex.

We now state without proof some well known facts.

Fact 1: fis IHR iff 1 — F is PF, iff F is PF, .

Fact 2: f is PF, implies f is IHR.

Fact 3: F is IHR iff Fp is IHR where Fp(z) = 1 — F(—xz).
These statements are for example proved by Barlow, Marshall and Proschan in
[1] and we follow their notation.

We now establish

Lemma 3. If H, @ are non-decreasing non-negative functions and F is an ITHR
distribution and t is a differentiable function such that t(z) = z and ¢ (z) = 1
for every z, then for each & ’

t=1(H) €
(3.4) [ H@Gw) arw) = [ H@6W) dF ).

Proor. Since G can be approximated by an increasing sequence of linear
combinations of increasing non-negative step functions, it is sufficient to prove
(3.4) with G replaced by c(-, a) where ¢(z, y) = 1if 2 = y and zero elsewhere.
Thus we need prove that

t—1(¢) ¢
/ CHW)AFQ) s f H(y) dF(y).

t—1(a

But similarly it is sufficient to replace H by ¢(-, b). We then have two cases
(34.1) b = a and (3.4.2) t(a) < b < a. So we need prove

£=1(8) £
(34.1) [ aows [ arw
which is obvious since :(¢) £ & We now prove
=18 ¢
(342) | fb dF (y) = f dF (y)
which will be done since F(b) =< F(a), if we show
f: © dF (z) = Ft'(§) — Ft'(a) f: dF(z) = F(¢) — F(a).

~a)

Hence it is sufficient to prove that Fi™(z) — F(z) isa non-increasing function,
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which disposes of the third case b < ¢*(a) also. Let A(z) = —In [l — F()],
we see Ft '(z) — F(z) = [1 — F(2)][1 — exp {—At"'(z) + A(x)}]. Thus we
need only establish that A(z) — At(z) is non-increasing, but § = A’ and 5(z)
< o[t(z)]t' (), which proves the result since 8 is non-decreasing.

CoroLLARY 2. If H, G are non-increasing non-negative functions and F is IHR
and t is a differentiable function such that t(z) < z and ¢ (z) = 1 for each z, then
for each &

(35) [ B@ew arw) s [ H@Ew) ).
t~1(®) £

Proor. In (3.4) replace y by —y, replace t(z) by —{(—=z), and replace £ by
—&, and the result follows by a change of designation utilizing Fact 3.

We now prove

LEmmA 4. If Xy, + -+ , X, are r.v.’s with densities f1 , « - - , fn Which are PF; then
both g and h are PFs where

(3.6) glz) =Prz < X, < -+ < Xj]
(3.6.1) hz) =PrXi < - < X, <zl
Proor. By definition

0@ = [ [ 1 = P ) deaf ) don - fuGan) .

Keeping in mind Facts 1 and 2, f1 , being PF, , is IHR and hence 1 — F, is PF..
Thus since f; is PF; the product (1 — Fy)f; is PF, and thus IHR. Therefore the
integral in braces is PF, . This argument repeats.

To prove (3.6.1) simply replace X; by —X; and # by —z and keep Fact 3 in
mind.

We are now in a position to prove

TraroreM 3. If X;, Xo, - -+ 18 a sequence of r.v.’s with densities which are
PF; and Y, Y,,--- 4s a sequence determined by some transformation t as in
(3.1), then sufficient conditions that Q(X) be stochastically smaller than Q(Y) are

(a) t is a differentiable function such that both t(z) = =, t(z) = 1 for all z
and for some posttive integer n D(X™) = (— o, Xpyi1,0) for alln = nor

(b) t is a differentiable function such that both t(z) < z, t'(z) = 1 for all x
and for some positive integer n D(X") = (X, ©) foralln = .

Proor. One checks that for both Cases (a) and (b) we have (3.2.1) and
(3.2.2) satisfied. It is necessary to show that Pr [@(Y) = 6] = Pr[Q(X) = 8]
forall 8 £ (0, 1) but by setting S,(Y") = [Q(Y"*) < 8, N(Y) =n + k]forn = ¢
it is sufficient to show that Pr S,(Y) =< Pr S,(X) for n = 1.

Referring to a result in [3] we have that

n—1 k
5u(7) = [Qr") 5.8, ) BV, Yar D™, () Yorye DT |.

In words this formula merely says that stopping at exactly (n 4 k) observa-
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tions and having a coverage of less than 8 can be accomplished only by not having
stopped on or before (n — 1) observations, the nth observation falls outside the
tentative region and the succeeding % observations fall inside the region con-
structed after n observations, which has a coverage of less than g.

Again we consider three cases (i) n + k£ = m (ii) n = m < n + k and
(iii) m < n.

Case (i):n + k& < m. By (3.1) we have immediately that

8.(1) = [PUDX) 5.6, 1) BX), X, DX, () Xurye DT

and by (3.2.2) we have S,(Y) C S.(X).
Case (ii):m = m < n + k. We have

n—1

5.(¥) = [ PGDX") 58, ) B(X), Xz DX,
i=n
(3.7) m n+k
N X;eDX"), N X;e¢ tD(X")].
Jj=n+1 J=m+1
Now we must be more specific. In what follows we shall consider the Case (a),
D(X") = (— o, Xn_ns1,n), but every step may be duplicated for Case (b).
Thus (3.7) becomes

n—1

Sn(Y) = {F(tXn—vrl-l,n) é B, D Bc(Xi), [Xn>Xn—q,n—]];

n+k m
N X < Xeganl, ALK <X,._,,H,n]}.
J=m+1 J=n+1

Since for S,(Y) to have occurred we must have had occur one of
X, < X4, < -+ < X,;,] = K(;) where (7) is a certain one of the permutations
of the indices (1, - -+ ,n). Thuslet F(8) = ¢

1)
Pr 8,.(Y) = (Z;f_ PriX;, <.+ <X, <1l

(3.7.1) nth n
Prly < Xiy e < 00 < Xl 'I];q Fi(ty)- I]ﬁ;l Fi(y)dF.,_,.,(y)
J=m JI=n
but (3.7.1) of the general form © H(y)G(ty) -f(y) dy, where H and @ are
monotone increasing and f is PF; so that Lemma 3 applies, and this proves the
result.

We remark that if # = 1 the second probability statement under the integral
in (3.7.1) is gone, in which case Lemma 3 applies with only the assumption of
IHR distributions instead of PF, densities.

Case (iii): m < n. We have by definition

n—1 k
S.(¥) = {P[D(Y”)] S8, N B0, X DY), () Xurse D(Y")}

=1
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but utilizing (3.3.2), and by (3.2.2) that D(Y"™) D D(X"™), there follows
[X.2D(Y"™)] C [X,2D(X"™)]. Since we also have tD(X") D D(Y™"), we
obtain

8.(Y) {P[tD(X”)] <8, le B(XY), X, 2 D(X™), él Xops tD(X")},

but by Case (ii) we see that the probability of the right hand side does not
exceed Pr [S,(X)]. This concludes the proof.

TeEOREM 4. If Xy, X, -+ is a sequence of independent identically distributed
r.v.’s with PF, densities, and 71, 72, - -+ is a sequence of order preserving differ-
entiable transformations such that r, < 3 < --- and esther (3.8.1) or (3.8.2)
holds where

(3.8.1) S rn, Ti(z) oz,
(3.8.2) Ti 2 Tip, ri(z) — x,

then

(3.8.3) Vi=m'(X), Yo=mn'(X),: -

18 a sequence of r.v.’s for which, in Case (3.8.1), the Jiiina upper tolerance interval
(Case (3.8.2) the lower tolerance interval) can be established with both stochastically
smaller sample size and stochastically larger coverage than for the X-sequence.

THEOREM 5. In Theorem 4 the assumption of PF, densities can be relaxed to
IHR denstiies, if the tolerance intervals are restricted to the minimum and maximum
of the sample in Case (3.8.1) and (3.8.2) respectively.

Proor. Let 4, &2, - - - be a sequence of order preserving transformation such
that lim e tutm * - - £; = 77 (juxtaposition indicates composition). Thus there
follows
(3.8.4) 7= (i),
or equivalently
(3.8.5) ria(Ti) = ;.

Thus (3.8) is equivalent with #; = 1. To see this use (3.8.5);
t; 2 Liff ial (@))/7ilr5" (2)]2 L.

Since the 7,’s are order preserving, they must have non-negative derivatives,
and the result is proved. But further (3.8.1) is equivalent with 774; < 77" which
is equivalent with ¢;(z) = z by (3.8.5). Similarly (3.8.2) iff #;(x) = x. Thus we
may apply Theorem 3 after applying each one of the ¢;’s, and since at each step
the distribution of coverage and sample size are monotone increasing and de-
creasing, respectively, this proves the result.



APPLICATIONS OF THE JIRINA PROCEDURE 865

REFERENCES

[1] Barrow, R. E., MarsHALL, A. W. and ProscrAN, F. (1963). Properties of probability
distributions with monotone hazard rate. Ann. Math. Statist. 34 375-389.

[2] Jikina, M1rosLAV (1952 and 1953). Sequential estimation of distribution-free tolerance
limits (in Russian). Czechoslovak Math. J. T7 211-232 and correction 78 283. (Also
(in English) in Selected Translations in Mathematical Statistics and Probability
1 (1961) 145-156. Amer. Math. Soec.)

[3] SaunDERS, Sam C. (1963). On the sample size and coverage for the Jifina sequential
procedure. Ann. Math. Statist. 34 847-856.

[4] SauNDpERs, Sam C. (1960). Sequential tolerance regions. Ann. Math. Statist. 31 198-216.



