NORMAL APPROXIMATION TO THE DISTRIBUTION OF TWO INDEPENDENT BINOMIALS, CONDITIONAL ON FIXED SUM

By J. Hannan¹ and W. Harkness^{2,3}

Michigan State University

In 2×2 contingency tables $[n_{ij}]$ resulting from n. independent trials with probability matrix $[p_{ij}]$, n_{11} and n_{21} are, conditional on fixed n_1 ., independent binomials with parameters $(n_1, p_{11}/p_1)$ and $(n_2, p_{21}/p_2)$. Further conditioned on fixed $n_{\cdot 1}$, their distribution is that of our title and a normal approximation has been suggested by Patnaik [6]. That this approximation is based on an erroneous limiting distribution, unless $|[p_{ij}]| = 0$ (where it reduces to the classical normal approximation to the hypergeometric), was promptly pointed out by Stevens [8], who also asserted that the conditional mean and variance of n_{11} are approximated by the normal parameters suggested by the theorem to follow.

The distribution of independent binomials with parameters (n_i, p_i) , 0 < $p_i < 1$, conditional on fixed sum c in $\{0, 1, \dots, n_1 + n_2\}$ is

(1)
$$f(k_1) = \prod_{i=1}^{2} b(k_i; n_i, p_i) / \sum_{k_1 + k_2 = c} \prod_{i=1}^{2} b(k_i; n_i, p_i)$$
 on $k_1 + k_2 = c$

(notation not otherwise defined is that of Chapters VI and VII of Feller [3]). Noting that f depends on the p_i only through $\lambda = p_1 q_2/q_1 p_2$, we prepare (1) for simultaneous normal approximation to the separate binomial probabilities by replacing (p_1, p_2) by the unique (P_1, P_2) , $0 < P_i < 1$, satisfying

(2)
$$P_1Q_2 = \lambda Q_1P_2, \quad N_1P_1 + N_2P_2 = c + 1,$$

where, here and throughout, $N_i = n_i + 1$. Theorem. With $H_i = (N_i P_i Q_i)^{-\frac{1}{2}}$, $H^2 = H_1^2 + H_2^2$ and $X_k = H(k - N_1 P_1 P_1 P_2)$ $+\frac{1}{2}$),

(a)
$$f(k) \sim H\phi(X_k)$$
 as $H, HX_k^3 \longrightarrow 0$,

(b)
$$\sum_{\alpha}^{\beta} f(k) \sim \Phi(X_{\beta+\frac{1}{2}}) - \Phi(X_{\alpha-\frac{1}{2}})$$
 as $H, HX_{\alpha}^{3}, HX_{\beta}^{3} \to 0$,

(c)
$$\sum_{\alpha}^{c} f(k) \lesssim X_{\alpha}^{-1} \phi(X_{\alpha})$$
 as $HX_{\alpha} \longrightarrow 0+$,

(d)
$$\sum_{\alpha}^{c} f(k) \sim 1 - \Phi(X_{\alpha - \frac{1}{2}}) \qquad as H, HX_{\alpha}^{3} \longrightarrow 0$$

Received May 9, 1963.

¹ Supported in part by National Science Foundation Grant No. G-5011.

² Supported by Office of Naval Research Grant No. Nonr-2410(00).

³ Now at Pennsylvania State University.

REMARK 1. By (a) we mean that $f(k)/H\phi(X_k)$, admittedly not a function of H and HX_k^3 , will be in any pre-assigned neighborhood of 1 provided (H, HX_k^3) is in a sufficiently small Euclidean neighborhood of (0, 0); by (c) we mean the corresponding assertion for $X_{\alpha} \sum_{k=0}^{c} f(k)/\phi(X_{\alpha})$, a neighborhood of $\{r \mid 0 < r \le 1\}$ and a right hand neighborhood of 0.

REMARK 2. n_1 , n_2 , c, and $n_1 + n_2 - c \rightarrow \infty$ as $H \rightarrow 0$ and, if λ and n_1/n_2 are bounded away from 0 and ∞ , the converse follows from (2).

Remark 3. The distribution function convergence as $H \to 0$, which is implied by (b), will, after the preparation (2), also follow from the very general theorems of Steck ([7], Section 2).

Proof of the Theorem. Let f^* be defined by

(3)
$$f^*(k_1) = (2\pi)^{\frac{1}{2}} H \prod_{i=1}^{2} H_i^{-1} b(k_i; n_i, P_i) \quad \text{on} \quad k_1 + k_2 = c,$$

and let $(a^*)-(d^*)$ denote the propositions (a)-(d) with f replaced by f^* . Noting that $f(k) = f^*(k)/\sum_0^c f^*(k)$ and that (d^*) implies (by two applications) that $\sum_0^c f^*(k) \sim 1$ as $H \to 0$, it follows that $(a^*)-(d^*)$ imply (a), (b), (d). Since (c) is trivially true for H bounded away from 0, it too is so implied.

Noting that $k_2 - N_2P_2 + \frac{1}{2} = -(k_1 - N_1P_1 + \frac{1}{2})$, (a*) follows on combining the two applications of the superior normal approximation to the binomial ([3]; VII, problems 19–21 (the additional condition, $H_i \to 0$, eliminates the need for fixed P_i),

(4)
$$b(k_i; n_i, P_i) \sim H_i \phi(H_i X_{k_1}/H) \text{ as } H_i, H_i (H_i X_{k_1}/H)^3 \to 0.$$

As in the binomial case, since X_k^3 is in $[X_{\alpha}^3, X_{\beta}^3]$ for k in $[\alpha, \beta]$ it follows from (a^*) that

(5)
$$\sum_{\alpha}^{\beta} f^{*}(k) \sim \sum_{\alpha}^{\beta} H\phi(X_{k}) \quad \text{as} \quad H, HX_{\alpha}^{3}, HX_{\beta}^{3} \to 0.$$

(b*) follows from (5) since⁴, for 0 < h and $-\infty < x < \infty$,

(6)
$$e^{-h^2/24} < \Phi_{x-h/2}^{x+h/2}/h\phi(x) < h^{-1} \int_{x-h/2}^{x+h/2} e^{x(x-t)} dt < e^{h^2x^2/24}$$

by Jensen's inequality and the elementary inequalities, $x^2 - t^2 \le 2x(x - t)$ and $u^{-1} \sinh u < \exp(u^2/6)$, and hence

(7)
$$e^{-H^2/24} < \Phi_{X_{\alpha-\frac{1}{2}}}^{X_{\beta+\frac{1}{2}}} / \sum_{\alpha}^{\beta} H\phi(X_k) < \exp(H^2 \max[X_{\alpha}^2, X_{\beta}^2]/24).$$

(c*) is an asymptotic version of the analogue of the binomial tail bound ([3]; VI (3.5)). Letting $t_i = H_i^2/H^2$ and $V_k = HX_k$,

⁴ For 0 < h < 1 and |xh| < 1.4, Feller [1; Lemma 1] (cf. Nicholson [5]) has given much tighter bounds. (6) is a substitute for (7.6.3) of Feller [2] and an alternative to VII (2.15-17) of Feller [3].

(8)
$$\frac{f^*(k+1)}{f^*(k)} = \frac{(N_1 - k - 1)P_1}{(k+1)Q_1} \frac{(c-k)Q_2}{(N_2 - c + k)P_2} < \frac{1 - t_1 P_1 V_k}{1 + t_1 Q_1 V_k} \frac{1 - t_2 Q_2 V_k}{1 + t_2 P_2 V_k}$$

and, hence, if $X_{\alpha} \geq 0$, $\sum_{\alpha}^{c} f^{*}(k)$ is bounded by a geometric series,

$$(9) \quad \sum_{\alpha}^{c} f^{*}(k) < \frac{f^{*}(\alpha)}{1 - f^{*}(\alpha + 1)/f^{*}(\alpha)} < f^{*}(\alpha) \frac{(1 + t_{1}Q_{1}V_{\alpha})(1 + t_{2}P_{2}V_{\alpha})}{V_{\alpha} + t_{1}t_{2}(P_{2} - P_{1})V_{\alpha}^{2}}.$$

(c*) then follows from (a*) and (9).

(d*) is a slightly strengthened analogue of the "large deviation" theorem ([3]; VII(5.1)). Abbreviating $X_{\alpha-\frac{1}{2}}$ by a, $X_{\beta+\frac{1}{2}}$ by b and taking β so that, as $H \to 0$, $Hb^3 \to 0$ and b, $b^2 - (a^+)^2 \to \infty$ (for example, β = the least integer with $b \ge \max\{a + \log a^+, H^{-\frac{1}{2}}\}$), VII (6.1) of [3] insures $b^{-1}\phi(b) \sim \Phi]_b^{\infty}$ and $\Phi[_b^{\infty}/\Phi]_a^{\infty} \to 0$ as $H \to 0$. Hence (d*) follows from the implication of (b*) and a slight weakening of (c*),

(10)
$$\Phi_a^b \lesssim \sum_{\alpha}^b f^*(k) \lesssim \Phi_a^b + b^{-1}\phi(b) \quad \text{as} \quad H, HX_\alpha^3 \to 0,$$

and the proof of the theorem is complete.

REFERENCES

- Feller, W. (1945). On the normal approximation to the binomial distribution. Ann. Math. Statist. 16 319-329.
- [2] FELLER, WILLIAM (1950). An Introduction to Probability Theory and Its Applications, 1.Wiley, New York.
- [3] FELLER, WILLIAM (1957). An Introduction to Probability Theory and Its Applications, 1 (2nd ed.). Wiley, New York.
- [4] HARKNESS, WILLIAM LEONARD (1959). An investigation of the power function for the test of independence in 2 × 2 contingency tables. Ph.D. Thesis, Michigan State Univ. Library.
- [5] Nicholson, W. L. (1956). On the normal approximation to the hypergeometric distribution. Ann. Math. Statist. 27 471-483.
- [6] PATNAIK, P. B. (1948). The power function of the test for the difference between two proportions in a 2×2 table. *Biometrika* **35** 157–175.
- [7] STECK, GEORGE P. (1957). Limit theorems for conditional distributions. Univ. California Publ. Statist. 2 237-284.
- [8] Stevens, W. L. (1951). Mean and variance of an entry in a contingency table. Biometrika 38 468-470.