ALMOST PERIODIC VARIANCES!

By Laurence HErssT
North Carolina State College

0. Summary. Second-order stationary random sequences, especially if Gaus-
sian, may be of statistical interest because their covariances may, under certain
conditions, be consistently estimated with finite realizations of the sequences.
It is shown that there is a class of non-stationary random sequences, namely
sequences of orthogonal random variables with zero means and variances f; which
form a uniformly almost periodic sequence, which are of statistical interest, at
least in the Gaussian case, in the following sense. f; admits a generalized Fourier
series expansion, and the Fourier coefficients v, of this expansion can be con-
sistently estimated with finite realizations of the sequences. In certain situations,
the nonconstant variance sequence f; may be directly estimated. The sequences
of interest may be converted, via Fourier transformations, into second-order
stationary random functions, and the Fourier coefficients v, , of the expansion
of fi, are shown to form a sequence of stationary covariances. A multiplicative
representation is given for the nonstationary sequences considered.

I. PRELIMINARIES

I.1. Introduction. A second-order stationary random sequence X; (¢t = 0,
+1, 2, ---) is a sequence of random variables (assumed real-valued and with
zero first moments, unless otherwise stated) such that for all integers i, ¢/,

(1.1) ave { X Xy} = yot < +

“gve’” denoting the usual mathematical expectation. Thus the (finite) covar-
iances of pairs of random elements of such sequences depend only on the dif-
ferences between the indices of the elements. A Gaussian or normal random
sequence is one such that any finite subset of random elements of the sequence
has a multivariate Gaussian or normal joint probability distribution. From the
viewpoint of one interested in statistical inference concerning the parameters
v figuring above, an important property of second-order stationary random
sequences whose covariances satisfy certain restrictions, is that, for each integer
s(s =0, %1, £2, ... ),

N
(1.2) My (q.m.)N‘ltZ_1 X Xeto = s,

where “lim q.m.” denotes quadratic-mean convergence.
The present study begins with the question: Are there nonstationary (i.e.,
not second-order-stationary) random sequences whose covariances are specified
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by a (countable) set of parameters v,, say (s = 0, =1, =2, --- ), such that
the v; may be consistently estimated from finite stretches of data, in the spirit
(though not the letter) of (1.2)? In other words, can one find nonstationary
random sequences which give rise to finite series of data amenable to inference
methods whose precision “improves” as the available length of series increases?
The answer to this question is affirmative, at least in the Gaussian case. There
are Gaussian nonstationary random sequences X; of potential statistical interest
in the sense foregoing. These are sequences of statistically independent real-
valued Gaussian random variables X, (¢ = 0, =1, &2, --- ), assumed to have
zero first moments for all integers ¢, whose associated sequence of variances
fi = var (X;) = ave (X} (t = 0, =1, &2, --- ) is assumed to be unzformly
almost periodic in the sense of H. Bohr (1951, transl.). Such uniformly almost
periodic sequences f; have formal generalized Fourier Series representations

(1.3) fo= 20 v,
where for real finite \, 2* = "™, with
(1.4) 2 ' < 4o

The complex generalized Fourier coefficients v, figuring in (1.3) and (1.4)
offer reasonable targets (given a sequence of the above-described type) at which
to direct inference techniques, at least in the following sense. If X; , X,, - -+, Xy
denote (for N = 1, 2, --- ) finite consecutive subsets of random elements of
such a sequence, then for each integer s,

N
(1.5) lim y-eo (q.m.)N‘IZ1 Xie™ = 7.,
t=
that is,
N
limyse (Qm. )N X7 cos 2miN, = re v, ,
t=1
(1.6)

N
limy.e (qm.)N'Y X} sin 206\, = im 7y, ,
t=1

where “re v,”, “im v,” denote, respectively, the real and imaginary parts of v .
Part IIT of this paper is devoted to proofs of (1.5) and its variants.

1.2. Almost periodic sequences. Almost periodic function theory is due to
Bohr (op. cit.), Besicovitch (reprinted 1954), Bochner, Weyl, and others. We
now lead up to a definition of uniformly almost periodic sequences. The pre-
liminary steps, as well as the final definition, are specializations to the case of
sequences, of those of Besicovitch (op. cit.), the original forms being Bohr’s.

Derintrion 1.2.1. A set E of integers is called relatively dense if there is an
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integer ! > 0 such that any interval of the real line, of length I, contains at
least one integer of E.

DeriniTioN 1.2.2. Let f; (t = 0, =1, &2, - - - ) be a real or complex sequence.
An integer T is called a translation number of f; belonging to ¢ = 0 if

(2.2) upper bound_wcicto |fror — fil S e

We denote the set of all translation numbers of a sequence f,, belonging to e,
by E { €, f t} .

The precise definition of uniformly almost periodic sequences follows.

DeriniTioN 1.2.3. A sequence f:(f = 0, 1, &2, --- ) is called uniformly
almost periodic if for any ¢ > 0, the set Efe, f.} is relatively dense.

For any u.a.p. (uniformly almost periodic) sequence, it follows from argu-
ments of Besicovitch that f; has formal expansion (1.3), provided we interpret
the equality either in the sense of uniform ‘convergence of the series to f:, or
in the sense that there exists a sequence of polynomials

(23) Z pé(*k)'ysz_t)‘a (k = 17 2, )
(where 0 £ p” = 1 and where for each k only a finite number of the factors
p differ from zero) which converge to f; uniformly in ¢, and converge formally
to (1.3), in the sense that for each s

(2.4) limg., pP = 1.
For such sequences, the inequality (1.4) holds.

1.3. Cyclical random sequences, harmonizable covariances. The consistency
theorem expressed by (1.5), and its variants, use normality assumptions in
their proofs. The balance of the theorems which follow do not require this
assumption. It will therefore be convenient to redefine those nonstationary ran-
dom sequences alluded to previously, now without the normality assumption.

DerintTioN 1.3.1. A cyclical random sequence X.(t = 0, 1, £2, --- ) will
denote a sequence X; of real-valued random variables with zero first moments
for all integers ¢, whose covariances, for all integers ¢, t’, have form

(3.1) ave {X;Xt'} = ftéu_t ,

where f, is a u.a.p. sequence, and 8,_, = 1if { = ¢, otherwise 6,_, = 0. Part
II of this paper develops some properties of cyclical random sequences.

The covariances of form (3.1) may be expressed in form close to that of the
harmonizable covariances of Lo¢ve (1948). These are of form

(3.2) v = |, [ 2 aaron vy,

where T'(\, \) is a covariance of bounded variation on its domain of definition.
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Since
i,
(3.3) Oyt = _/_‘% 247N,
one may define
(3.4) r\) = 25 7,
A<M’

and write covariances satisfying (3.1) in the form
oy, ,
(35) oy = f [ 20T and (V).
_% f—

II. CYCLICAL RANDOM SEQUENCES

IL.1. Properties of u.a.p. sequences. In what follows we specialize results
from the monograph of A. S. Besicovitch (op. cit.). He considers only continuous
u.a.p. functions defined on the whole real line, and consequently uses integrals
rather than sums in defining the important mean limit (II1.1.1). The proofs of
specializations given here of Besicovitch’s theorems all follow Besicovitch’s
proofs nearly word-for-word, changes being required only in the domains of
definition and in the replacement of integrals. with sums in the appropriate places.
We omit these proofs.

A few elementary theorems about u.a.p. sequences follow.

TaeoreMm I1.1.1. Any u.a.p. sequence is bounded.

TraroreM I1.1.2. If f; is u.a.p., then so is any uniformly continuous function of
fi. Thus cf. (constant), f;, |/, are w.a.p. as is f;*, provided |f.| > 0 (all t).

TaroreM I11.1.3. A uniformly convergent series D wv.2 °* (for real \,), is
u.a.p.

The crucial mean-value existence theorem for u.a.p. sequences follows.

TareoreM I1.1.4. For any u.a.p. sequence f; , the mean value

(1.1) Mif} = limN»wN_I;fzw

exists, independently of T(T = 0, £1, £2, --- ). Iff, 2 0(t = 0, £1, £2, - - )
and for some t = t*, say, fu > 0, then M{f} > 0.

The following theorems develop the Fourier series approach to u.a.p. sequences.

Tueorem I1.1.5. If f; 7s u.a.p., then
(1.2) Mif2" = v(\)
1s defined for oll real N, but nonzero for an at-most-countable \-set.

If f; is real, then y(A) = v¥(—X\) (the overbar denoting complex conjugation).
Hence if v(\) is nonzero, then v(—A\) is nonzero, and we can write the A-set for
which y(\) is nonzero as A\, s = 0, =1, £2, ---, where A_;, = —A\,. Since
v(0) is real, we take Ao = 0. The formal expression

(13) ft = _Z'Ysz_txs, Ys = 'Y()\S),
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is called the generalized Fourier series (for short, Fourier series) of f;, and we
write (1.3) whether or not the series converges.

TraeoREM I1.1.6. The Fourier series of a u.a.p. sequence represented by the sum
of a uniformly convergent trigonometric series f: = > 2w ™ coincides with this
series.

TreoreM I1.1.7. If a sequence

gk) = E'ch)z—t)\s (k = 17 27 e )
of u.a.p. sequences converges uniformly to a sequence f;, then the Fourier series of
[t is given by

(1.4) fo= 2o v ™,

where v, = liMyoe1® for all s.

TuroreM II1.1.8. If 2 u.a.p. sequences have the same Fourier series, then they
are identical.

TareoreM I1.1.9. Let f; be a u.a.p. sequence with generalized Fourier coefficients
vs . Assume fy vs real. Then ‘

(15) M = Sl < +o.

11.2. Properties of cyclical random sequences and u.a.p. variances. In this
section we study properties of cyclical sequences and their associated variance
sequences.

TaroreM I1.2.1. If X, (¢t = 0, =1, £2, .-+ ) is a cyclical random sequence,
with u.a.p. variance sequence f; possessing a formal expansion

(2.1) fi= évsz““ (t=0,=%1,+£2--),

then v.(s = 0, &1, £2, -+ - ) is a complex valued stationary covariance sequence.
Proor. Define

(2.2) Jx(\) = N'*éX,z‘“ (X real, finite).

Then

p— N
limy,ew ave {Jy(N)Jx(N)} = limy.e N fet®
(2.3) &

= M{f2'* ™} = y(\' = \) < +oo.

Hence v(\" — \) is the limit of a sequence of complex stationary covariances
and the theorem follows by the specialization of Theorem 34.1.B (Logve, 1960)
to stationary covariances.
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II.3. Multiplicative form of cyclical random sequences. We give a simple
product form for cyclical random sequences, based upon the following lemma of
Bohr (specialized to sequences).

Lemma 11.3.1. If f; and g, are u.a.p. sequences with Fourier series

(3.1) fi= 2:: o, g = g Bz,
then the product f.g: 7s u.a.p. with Fourier series

(3.2) fge = i%f‘“,

where

(3.3) ¥ = ,,,,2;; T

meaning that the exponent N, runs through all numbers of form w, + v, , and that
the corresponding coefficient v, is given by the indicated sum, where the series, if it
has an infinite number of terms, is absolutely convergent.

The desired theorem follows. .

TraeorREM I1.3.1. Let X, be a cyclical random sequence, with

(3.4) var (X;) = fi = ifysz_”“ (t=0,£1, £2,--.).

There is at least one other eyclical random sequence X; whose associated variance
sequence f; is identically equal to f;, fi = f. (t = 0, &1, &2, --- ) and such
that X has form

(3.5) X: = oM (t=0,£l, £2,--- )s

where the 5, form of a sequence of uncorrelated random variables with zero
means and unit variances and ¢, forms a u.a.p. sequence, with Fourier series

(3.6) oy = Z oz e,

say. Correspondingly, there is at least one representation of v, (figuring in
(3.4)) of form

(3.7) Vs = Z ap‘—"—q .
Bp—hg=Ng
Proor. Set o, = f}, where fi denotes the (real) non-negative square root
sequence associated with the non-negative sequence f; . Then ¢, is u.a.p. since
the non-negative square root of f is a uniformly continuous function of f. Let
o: have Fourier series (3.6). Since f; = 0.0, , we have, by the preceding lemma,

that
(38) =0T apae™

—®  pp—hg=MAy
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say, and the uniqueness of the Fourier series representation for u.a.p. sequences
implies that A\; = \, and that (3.7) holds. If a random sequence X is defined
by (3.5), then for all integers ¢, ¢’

(3.9) ave {X: X1} = fdv_:.

III. CONSISTENCY THEOREMS

III.1. Consistent estimation of Fourier coefficients. We prove the limit rela-
tion I:(1.5) for cyclical Gaussian sequences.
TrreorEM II1.1.1. Let X, be a cyclical Gaussian sequence whose variance sequence

(L1) fo= e

Then for each integer s,

(1.2) limy.e (q.m.)N—lt‘é1 XM = g,
Proor. We have

N N
(1.3) limy..ave {N 'Y Xiz™) = limy,o N 7' f2™ = M{f2™} = v,,
t=1

t=1

and
N N

(14) limy. N var (N7 X12™) = 2limy.o N0 ff = 2M{f} < + =,
t=1 t=1

. 2 . .
since f; is u.a.p. whenever f; is u.a.p. Thus
N

(1.5) limy,. var N7 D X22? = 0,

t=1
completing the proof.

II1.2. Continuous-parameter extension. We sketch the setting for a continu-
ous-parameter formal extension of Theorem II.1.1. The theorem is stated with-
out proof, since the proof proceeds in the same manner as that of Theorem II.1.1.

Derinmrion II1.2.1. A function f(z) defined on —0 < 2 < o is called
u.a.p. if it is continuous and its set of translation numbers Efe, f(z)} is relatively
dense for any ¢ > 0. Here we modify the definition of translation numbers to
include any z-values, and we modify similarly the definition of relative density.

DeriniTioN I11.2.2. A real-valued random function X (z) defined on — 0 <
z < o, with zero first moments for all z, is called cyclical if for any z, ', z = ',
X (z) and X(z) are uncorrelated and var (X(z)), the variance function asso-
ciated with X (z), is u.a.p. We consider in particular Gaussian cyclical random
functions, i.e., cyclical random functions X (z) such that for each fixed z, the
random variable X (z) has a marginal probability distribution which is Gaussian.

We require a generalization of the arithmetic means appearing in the proof
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of Theorem II.1.1, namely, the integral means with respect to a random func-
tion V(z):

(2.1) T fo ' V(z) dz,

(T a finite real number). The integral figuring above will be interpreted as a
quadratic-mean Riemann integral as defined in Lo&ve (1948). This integral
will exist wherever fy(z) = var (V(z)) is continuous and bounded on the
domain of integration. Thus the integrals will be defined if fy(z) is a w.a.p.

function.
Using the preceding ideas, the following formal extension of Theorem II.1.1

can be readily proved.
Turorem II1.2.1. Let X(z) be a Gaussian cyclical random function defined

on —wo < x < o, Let f(x) = var (X(x)) have expansion
(22) J@) = v

Then for each integer s,

(2.3) limzoe (qm.) T7° foT X3 (z)e™ = y,.

II1.3. An approach to direct variance estimation. The possibility of direct
estimation of f; will be examined heuristically in this section. Direct estimation
of f; = var X, , when X, is a Gaussian cyclical sequence, does not pose much
of a problem (at least asymptotically) when f; is purely periodic, with period
N, say, since one could estimate f; with

(3.1) m—l;;l X?+k1v y

given mN observations X;, X,, -+, X,~. However difficulties arise when
f:+ is not purely periodic. We consider the case where f; is limit-periodic in the
sense of Bohr.

DeriniTioN IT1.3.1. A sequence f; is limit-periodic if it is the limit of a uni-
formly convergent sequence fi (k = 1, 2, --- ) of purely periodic sequences.
It can be shown that limit-periodic sequences are u.a.p.

TueoreM I11.3.1. f, ¢s limit-periodic if, and only if, its Fourier series has form

(32) ft = Z'Ysz_tqrsa

where q 1s a real number and the v, are all rational numbers.
TueoreEM I11.3.2. If f; is a u.a.p. sequence, then

N—-1

(3.3) limy.e N ;’ftwcp = fﬁp)
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exists uniformly in t and is a purely periodic sequence whose Fourier sertes con-
sists of those terms of the Fourier series of f, which have a period p. If f: is limit-
periodic, it can be shown that

(34) limg.o /{7 = fi,

uniformly in t.

This theorem and its predecessor are specializations, to the case of sequences,
of theorems in Besicovitch (op. cit.).

A heuristic approach to the problem of direct variance estimation for Gaussian
cyclical random sequences, in the limit-periodic variance case, will be based
upon the following theorem, together with Theorem III.3.2.

TaeoreMm I11.3.3. If X, is a Gaussian cyclical random sequence with variance
sequence f; , then

N-—1

(3.5) limyw ()N 2 Xivip = £i7,

where fi¥ is defined by (3.3).
Proor. We have
N—1 N—1

(3.6) limy.. ave {N“,; X2} = limyaw Aﬂgoj Feans = 1P

and
N—1 N-1

(3.7) limy,. N var (N‘lkz X2p) = 2limyoe N‘lkz frp = FP,
—0 =0

. . . . 2 .
say, which is finite since f; is u.a.p. Hence
N-—-1

(3.8) limy.,e var N‘lkg Xip = 0,

completing the proof.
The preceding theorems suggest the following procedure, not rigorously
justified, for estimating f; in the limit-periodic case. Form

N-—1
(3.9) fi® = N”‘% Xiiip -

For sufficiently large N, p, one hopes that fi% would closely approximate (in
q.m.) to f; .
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