THE ASYMPTOTIC NORMALITY OF TWO TEST STATISTICS
ASSOCIATED WITH THE TWO-SAMPLE PROBLEM'

By SAurL BLUMENTHAL

Unaversity of Minnesota

0. Summary. In this paper we prove the asymptotic normality of two sta-
tistics which have been proposed to test the hypothesis that two samples come
from the same parent population. One statistic is the number of runs of X’s and
Y’s in the combined sample of X’s and Y’s; the other is the sum of squares of
“8¢s” where S; is the number of X’s falling between the sth and (¢ — 1)st
largest Y’s. Both statistics have been studied previously, both lead to consistent
tests, and both were known to be asymptotically normal under the null distribu-
tion. Here we prove limiting normality under a fairly wide class of alternatives.
By means of limiting power against a sequence of alternatives which approach
the null hypothesis, we compare these tests with one another and with the
Smirnov test based on the sample c.d.f.’s. Against a rather large class of alterna-
tives, the Smirnov test is seen to be considerably more powerful. The method of
proving limiting normality used here is based on studying conditional moments
and can be used to prove limiting normality of “combinatorial’”’ statistics other
than the ones studied herein.

1. Introduction. The purpose of this paper is to demonstrate the asymptotic
normality of certain statistics which have been proposed for testing the ‘“two
sample” problem. Chief among these are the Wald-Wolfowitz run statistic
which has been studied extensively in [13] and [17], and a statistic studied by
Dixon [6] and by Blum and Weiss [1]. Since previous proofs of normality under
the null hypothesis exist (Wald and Wolfowitz [13], Blumenthal [2]), the main con-
tribution here is the proof of normality under a fairly wide class of alternative
distributions. Using this result power can be computed for the tests in question.
A comparison of limiting powers for these tests is made in Section 7. It is shown
there that for a large class of alternatives, these tests have a limiting efficiency
of zero when compared to the Smirnov test based on the sample distribution
functions. In view of similar results by Cibisov [3] for the goodness of fit problem,
this is not surprising. We believe also that the remarks of Weiss [16] regarding the
behaviour against different alternatives hold here also.

Let X;, -, Xmand Yy, ---, Y, be two sets of independent random vari-
ables, the first set with common c.d.f. F(z) and the second set with common
c.d.f. G(z). We assume that both F(z) and G(z) are absolutely continuous, and
have continuous differentiable density functions f(z) and g(z), respectively.
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We assume that (m/n) = r + r, where n'r, — 0 as n increases. In the sequel,
we treat m/n as a constant r without loss of generality.

Let Zy = G(0), Zny = G'(1),and Z; < --- < Z, be the values of the ¥’s
arranged in increasing order. For each z = 1, --- , n + 1, let S; be the number
of X’s which lie in the interval [Z; 1, Z.]. All the statistics to be considered can
be expressed as functions of the S; . Since the S; are invariant under probability
transformations, we shall assume hereafter that f(z) = 1 for 0 = z = 1, that
G(z) assigns unit mass to [0, 1], that G'(0) = 0, G"'(1) = 1 and that g(z) is
bounded above and is positive on (0, 1). This last assumption assures the unique-
ness of the inverse G (z) for all z in [0, 1].

We shall denote the difference, or sample spacing, Z; — Z, by W, ,i =1, -- -,
n + 1. The statistic proposed by Dixon is

n+1 n+1 n+1

V= 28T = 288 — 1) +m/m =07 3088 — 1) + 1
=1 =1 =1
In Section 3, we study the distributions of ‘“‘combinatorial”’ statistics of the
form
1" (S)
w2 \k):
Clearly, V* has the same limiting distribution as

2n+1 S"
T+;LZ<2>.

=1

2
have the same properties. One could, in fact, consider the possibility of using

Further, it is obvious that as test statistics, V* and n™* D> i (S’> will

nt M <§cl> as a test statistic for k& other than 2. Consistency or lack thereof

can be established easily using the convergence theorem of Blum and Weiss [1],
and power could be computed using the results of our Section 3. We see no point
in doing this here since in [1], V* was shown to have better local power than these
tests against a class of “linear” alternatives and in Section 7, V* itself is shown
to have poor power against these same alternatives when compared to the
Smirnov test. In Section 4, the limiting distribution of V* is written out ex-
plicitly.

We might note also that V* is not the locally most powerful rank test against
these linear alternatives but only the locally most powerful ‘“sample spacings”
test. In [9a] Lehmann derived the locally best rank test for this case. The fact
that this test is not a “‘sample spacings” test combined with the power result of
Section 7 indicates that the class of “sample spacings” tests is too narrow.

The run test is studied in Section 5 and its relation to the quantities
Si, ++, Sppa is indicated there. This relation is exploited to prove the limiting
normality of the run statistic by obtaining the limiting normality of a certain
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function of Sy, + -+, Spy1, namely n~" D 77 80(S;), where d(z) = 1if z = 0
and 0 otherwise.

The methods of proof in Sections 3 and 5 are similar and are justified by the
argument given in Section 2.

It should be mentioned that tests for the one-sample goodness of fit problem
which are based on statistics analogous to the above mentioned ones were pro-
posed and studied by David [5], Kitabatake [9] and Okamoto [10], [11]. In the one-
sample case, the sample intervals are [F3'((s — 1)/n), Fs'(i/n)] (i=1, --- ,n)
where Fo(z) is the hypothesized distribution. The S; are then the numbers of
X’s in these intervals (now fixed instead of being random). Because of the strong
resemblance of the statistics, many of the computational schemes used by
Kitabatake and Okamoto can be used for the two-sample case (see Sections 3
and 5).

2. Gene.al approach. In both proofs of normality (Sections 3 and 5) a condi-
tional method of moments is used to establish the asymptotic normality given
the Y1, .-+, Y, of a function H(S;, -+, Spt1). (In Section 3, H(S;, -+, Sa)
isn D> 2 87, and in Section 5 it is n7 Dt 80(S;) where do(z) = 1if x = 0
and O otherwise.) This normality will be shown to hold for almost every sample

sequence Y, , Y,, --- . We now justify the particular method employed. Denote
H(S:, -+, Suy1) by H,(S). Denote conditional expectation given ¥y, ---, ¥,
as E,(- | Y). Our goal is to show that as n increases

(2.1) FE exp [itn*(Hn(S) — EH,(8))] — exp (—t%/2).

We summarize our assumptions and result as

Taeorem 2.1. If H,(S) and E,(H.(S)|Y) are as given above, if
W E,(H,(8) | Y) — EH,(8)] considered as a function of (Y1, -+-, Ya) has a
limiting non-degenerate Normal distribution, N (0, ¢1) and if

2B {[Ha(S) — E.(H.(8) | Y)I?| ¥}
(2.2) —(p—1)(p—38)---3.1c8" if p is even
-0 if p is odd

with probability one, (where ¢, is some constant) then (2.1) is true withc = ¢; + ¢, .
Proor. We can rewrite the expectation in (2.1) as

E exp {ttn)[E,(H.(8) | Y) — EH,(S)]}
- B, [exp [itn*(H,(S) — En(Ha(8)|Y))] | Y].

The normality proof then consists of showing that the random variable
E, [exp [itn*(H,(8) — E,(H,(S) | Y))]| Y] approaches exp (—tc;/2) with
probability one as n increases, where ¢, is the constant mentioned in the hypothe-
sis, and of showing that E exp {in![E,.(H,.(S) |Y) — EH,(S)]} approaches
exp (—1tc,/2) as n increases. This latter convergence follows easily from the Lévy
uniqueness theorem for characteristic functions and from our normality assump-

(2.3)
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tion. Thus if we can show the above convergence with probability one, because
of the boundedness in absolute value of the exponentials in the expectations in
(2.3), it must be that the limit as n increases of (2.3) is

(24)  exp (—Fc/2) lima.w E exp (i} [, (Ha(S) | Y) — EH.(S)]},

which is in turn (by the result noted above) exp [— (£/2) (¢ + ¢)], and this is
the desired result.

A series expansion (with error term) of the expression E,[exp [itn!(H.(S) —
E.(H.(S)|Y))]| Y] shows that the Condition (2.2) is sufficient to imply the
desired convergence with probability one. This proves the theorem.

In the cases which we are studying, previous work (Weiss [15], Proschan and
Pyke [12]) has established the limiting normality of E,(H,(S) | Y). Thus we
shall direct our efforts in Sections 3 and 5 to establishing the validity of (2.2).

3. Asymptotic normality of combinatorial statistics. In this section, we shall
consider the limiting distributions of statistics of the form

n+1 n+41
1) B =LY Szl Simk+ D) =lZ<S").
n i=1 k! nia \Fk

H%(8) has the following interpretation: Consider all (Zq’) k-tuples (X, , -,
X)) 1 =4 < - < i < mof the X’s, nH%(S) is the number of these such
that all of X;, , - -+, X, fall in the same sample interval [Z;;,Z;],7 =1, -+,
n + 1. Although we shall carry out the details only for & = 2, it will be seen that
the method will suffice for any &, and in fact will suffice to show the limiting joint
normality of any finite set (H%(S), ---, H(8)) of p of these quantities.
Noting that Ha(8) = o' 2 'S = m/n = r, it can then be seen that the
result obtained for H%(S) implies the limiting normality of n™ > i3 S¥ since
the latter is a linear combination of H%(S), p = k. The same argument shows
that finite collections of the form, (n ">t 87, - -, 7' 2 14 S%) have a
limiting joint normal distribution.

For real numbers z; , --- ,2xsuch that 0 < z; < 1, (¢ = 1, - -+ , k), we define

(g, ---,28) =1 ifax, -, x; fall in the same sample interval

(3.2)
= 0 otherwise.

Note that implicitly (1, - -+, xz) is a function of Yy, -+, Y, as well as of
21, -, % . Since the X’s are independent, we have that Pl(X,, , -+, X;,) =

1|Y] = X i Wk where W, is the length of the ¢th sample interval (based on
Y1, ---, Y,). Note that we can write

(33) HI:'-(S) = n-lz tk(Xil y Tt sz)

The sum Y, extends over all k-tuples (¢, - -+ , %) 1 <4 < -+ < 4 < munless

otherwise stated. In the form (3.3), H%(S) looks deceptively like a “U sta-
tistic”’, which it is not in the strictest sense. Thus we cannot use the theorems
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for “U statistics” but must treat this separately. Note that

n41
(34) En(te( Xy, oo, X)) | Y) = X_;W'f-

Thus we have that
n+1
B (S) | V) = 07 T Ba((Xsy, -, Xe) | V) =07 2 (z W’f)
7=1
= (m) n <§1 wi) =n*" l %l wi)+s
- k =1 ¢ - k_i 7=1 ’ "

where 75, approaches 0 stochastically as n increases (see (3.21)). The limiting
standard normality of

(3.5)

n+1 1
n <nk"1 Z_; Wi — klfo g () dx)
1 1 2)
{[(Qk)! - 2k(k!)2]/0 g7 (z) dz — [(lc - 1)k1f0 g () dx}}

(3.6)

has been demonstrated by Weiss [15], and again by Proschan and Pyke [12].
In view of Theorem 2.1, it remains to study the conditional moments of

s [ (e - E )]

i=1

in order to verify (2.2).

Counting the various terms involved in the moments becomes very compli-
cated, and to avoid excessive notational troubles, we shall study in detail only
the case k = 2.

We shall prove

TarorEM 3.1. Let (X, X;) be defined by (3.2), and g(x) the denstty of the Y’s

n+l

be differentiable on [0, 1], then
P
limy .o B, [{ 7.71} ) <t2(Xi X)) -3 W?)} Y]
=1
(38) =0 p=1,3’5...
=[(p=D(p—=3)--- 31" p=24-

with probability one, where >~ eatends over all pairs (i < 7). The constant ¢ is given
by e = r[fog (x)de + 6r [g7(x)dx — 4r(fog " (z) da)’].

Proor. Our methods of counting in the proof of (3.8) are based on those used
by Daniels [4], Hoeffding [8], and Okamoto [11], chiefly the last.

Let

n+1

(3.9) Yo X, Xj) = (X, Xy) — ;W?.
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We are studying
(310) Mp = Lin n—‘pﬂ(z ‘l’2(X'i ) X]'))p l Y]
The right side of (3.10) can be partitioned into sums of products of conditional
expectations because X;’s with different subscripts are independent. The details
are exactly as in [11]. The conditional expectations are polynomials in Y 177 W%
From a result due to Weiss [14], it follows that with probability one

n+1

1
(3.11) lima ™ 30 Wh =T+ 1) [ ¢7(a) do.
=1 0

Using (3.11) we replace terms of the form Y % W* by the appropriate con-
stants, getting new expressions which do not involve random variables and
which are valid with probability one. Again following the format in [11], it is
easy to see that for p odd, u, is 0(1) as n increases, and that for p even, the only
terms making a contribution to u, are (w.p. 1) products with factors of the form
E,[Yo(X;, X;)¥s(Xs, X1)]. In [11], further simplification resulted because it was
necessary to have 7 = k and j = [. Here both these factors, and factors where
only one of the four equalitiest = k,¢ = I, j = k,j = 1 is satisfied contribute
to up . Use of (3.11) and straightforward counting techniques yield the conclu-
sion of the theorem.

4. Asymptotic distribution of ¥ statistic. We can combine the results (3.5),
(3.6), and Theorem 3.1 to infer the following
TaEOREM 4.1. Under the assumptions of Theorem 3.1, the distribution of

B @) Ao
41) [fol g (z) dz + 6r fol g (z) dz + 2° j;l g (x) de — r(r + 4)

(s

approaches the standard normal distribution as n increases.

Since
n+1 S
Vi=r42 <n“1 > (2»
3=1

we can compute the power of tests based on V* using the theorem above. Note
that we obtain a nontrivial approximation for this test only for alternatives of
the form studied in Section 7. A test of the hypothesis that G(z) = F(z) (the
uniform distribution) (0 < z =< 1) based on V* would reject this hypothesis
whenever V? exceeds C,(a) where « is the desired level of significance. We shall
use the following standard notation:

(4.2) a(y) = 2 | e g

and K («) is the number such that ®(K (a)) = «.
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Then the above theorem shows that for large n, C,.(a) is approximately equal
to
(4.3) (r/n) (1 + 2r) + 2(r + 1)K (a)].

b. Limiting conditional normality of the run statistic. In this section, we con-
sider the limiting conditional distribution of

(5 1) HO(SI; o 7Sn+1)
' = (n + 1)™" times (the number of S; , - - - , S,41 which equal zero).
We shall abbreviate Ho(Si, - -+, Sp41) by Hy. Denote the number of runs of

X’s and Y’s in the combined ordered sample by U, . It is easily seen that the
number of runs of X’s is the same as the number of cells containing at least one
X, which is (n + 1)(1 — H,), and from the definition of U, , we see that U,
differs from twice the number of runs of X’s by at most one. Formally, we have

(5.2) [(Un/n) = 2((n + 1)/n)(1 — Ho)| < "

From (5.2), we see that if H, is asymptotically normal with mean x and
variance ¢” (no” becoming infinite with increasing n), U,/n will be asymptotically
normal with mean 2(1 — u) and variance 4¢°. We shall now examine the distri-
bution of Hy .

Since we have

(5.3) P{S;=0|Y} =0 —W)"
where W, is the length of the 7th spacing, it follows that

n+41
(5.4) By(Ho|Y) = (1/(n+1)) 2 (1 = W)™

Using the results of Proschan and Pyke [12], it can be shown that the asymp-
totic distribution of

1 n+1 m 1 g2(x)
’*(ﬁ; L =w)" =, r+g(x)d”>

bogi(a) Y org(a)
69 | [ ghdsdst [ s

ARG : [ g'(z) 4< o) >2:r
N Ok = k(e
is the standard normal.

From Theorem 2.1 of Section 2, it follows that we need only consider the
limiting behavior of the conditional moments of n}(Hy — E,(H,|Y)). Using
the computational scheme which Kitabatake [9] employed to solve the one-
sample analogue of this problem, we shall prove the following
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TuEOREM 5.1. Let Hy be defined by (5.1) and let g(x) be bounded on [0, 1], then
limy .o B fn'*(Hy — E (H, | Y))"| T}
(5.6) =0 ifl=1,3,5---
=1—-1)(10—3)---1C"* ifl= 24,6, -
with probability one. The constant C is given by

(57) C = ' _g=) dx—fol g dx—r( R AC) dx>2.

o 7+ g(z) 2r + g(2) o (r+g(z))
Proor. Let Jo = (n + 1)H,. Let V; = 11if S; = 0, and 0 otherwise. Then,
n+1
(5-8) Jo = Z Vi )
7=1
and
(5.9) EfV:|Y} = (1 —W)™
Also,
(5.10) BJS | ¥} = 3 (1= Wi — o = We)"
where
@ =Jo(Jo—1) -+ (Jo—s+1) if s>0
¥ =1
and D _.r, stands for summation over all permutations (41, -« - , 4,) of (n + 1)

integerssuch that 1 < ¢; = n+ 1,4, # 4=k (G, k=1,2,--- ,n+1).

We note also that we can write (w.p. 1)

A=Wy — - —=W;,)" = exp l:—rjg (nWﬁ)]
(5.11) ) ,
-[1 - é% (,; (nW@-j)> + 0(1/#)].

Using these definitions and relations and applying the analytical method used
by Kitabatake [9] to study E.{n'"™*(Jo/(n + 1) — E.(H, | Y))'**| Y}, we can
establish the following equations

n+41

E. (n'(Hy— E.(H,|[Y))*| Y} = (2 —1)(20 —3) --- 5.3.1-[2

=1

(5.12)  exp(—rnW.) _ W& oexp (—2rnW;) .y <"+1 (nW) exp(—mW¢)>2:|l
n -+ 1 =1 n+1 fo n—+1

™

+0(n™)
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and
Enfn'"(Ho — Ed(Ho| V)™ | ¥} = 0(1/nd).
Applying the Weiss convergence result, (3.11), we obtain (5.5).

6. Asymptotic distribution of the run statistic. Now we can put together the
remark following (5.2) with the results of Theorem 2.1, Theorem 5.1 and Equa-
tion (5.5), to obtain explicitly the limiting distribution of U, , the number of
runs in the combined sample of X’s and Y’s.

TarorEM 6.1. Under the assumptions of Theorem 5.1 the distribution of

i1 Y org(z)
n <5Un—2f0 r_i_g(m)dx)

Ygle) o oo [ g(w)
(612 U e R N g

1 b1 2 1 2713
g'(2) > 1 ( g(z) ) ]
- dz) —
(L ar ) = ([ et
approaches the standard normal as n increases.
Using the theorem, we can set up a test of the hypothesis that G(z) = F(x)
(the uniform distribution) based on U, and having size of approximately « for

large n. Letting ®(v) and K(a«) be defined by (4.2), the test based on U, will
reject the hypothesis of equality whenever U, /n is less than

(6.2) (2r/(1 4+ )L — (K(a) (1 + 7)Y/ (1 + r)n)l.

When the alternatives are of the type studied in Section 7, we can obtain
nontrivial approximations to the power of these tests.

7. A comparison of limiting power. As an application of the results of Sections
4 and 6, we shall compute the limiting power of the V* test and the run test
against sequences of alternatives approaching the uniform distribution, and we
shall then compare these tests to the Smirnov test of the same hypothesis. We
consider a sequence of densities g,(z) given by

(7.1) ga(z) = 1+ (¢/n*)h(z)

where ¢ > 0 and we have
1

(7.2) f h(z) dz = 0; [h(z)|<B< .
0

We define K () and ®(v) as in (4.2).

We shall use the results of Noether (see Fraser [7], pp. 272-273) to compute
limiting power and efficiency with respect to the sequence g.(x). Using Theorem
4.1 and the following remarks, it is easy to verify the conditions of Noether’s
Theorem for the V* test. It then follows that the limiting power of this test
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against the sequence (7.1) is given by

(7.3) ® <K(a) ~ @/ + 1) [ i) dx).

From Theorem 6.1 we can again verify the conditions of Noether’s Theorem
for the test based on U, , and verify that the limiting power against the sequence
of alternatives (7.1) is

(7.4) ® (K(a) — (r/(r + 1)¥%) fo 1 B (z) dx).

It is then easily verified that the efficiency of the run test relative to the V°
test is 1/(r + 1). Thus as r, the ratio m/n, increases the relative efficiency of the
run test decreases to zero.

It is more informative to use the above results to compare these tests to the
Smirnov test instead of to one another. It is easily seen that if instead of the
sequence (7.1), we had considered

(7.5) ga(z) = 1 + (¢/n’)h(z)

the limiting power of either of these tests would equal the size of the test. It is
simple to compute a lower bound for the power of the Smirnov test which rejects
H, when supo<z<1 |[Fa(z) — Gu(z)| exceeds an appropriate constant, where
F, and G, are the sample distribution functions. From the lower bound, it is
easily shown that if ¢ is sufficiently large, the Smirnov test will have limiting
power exceeding its size against the sequence (7.5). Thus relative to the Smirnov
test, the two tests studied here have efficiency of zero against (7.5). (This
relation was pointed out by the referee.) This result is foreshadowed by the work
of Cibisov [3] for the “one sample” or goodness of fit problem. It should also be
remarked that this relation between the relative efficiencies could be reversed
by considering alternative sequences similar to those mentioned by Weiss in his
review [16] of the work in [3]. Thus the comparison of efficiency depends strongly
on the sequence of alternatives used. Most investigators seem to consider the

sequence (7.5) a reasonable one.
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