ON A PARADOX CONCERNING INFERENCE ABOUT
A COVARIANCE MATRIX!

By A. P. DEMPSTER

Harvard University

1. Introduction and summary. Suppose a p X p dispersion matrix T is con-
sidered to have the Wishart distribution W (=, n), c. f. Anderson (1958) p. 158,
where X is an arbitrary full rank covariance matrix and n = p. Suppose T is
observable but = is unknown, and suppose a posterior distribution is to be as-
signed to = given T, where the term posterior is meant in a wide sense to allow
the use of a Bayesian or fiducial or any other form of reasoning in arriving at the
posterior distribution. A lemma is proved in Section 3 giving a property of all
such posterior distributions which possess a natural linear invariance property.
The paradoxical nature of this property is discussed in Section 4.

2. Notation and preliminaries. Two basic properties of the Wishart distribu-
tion are: .
(I) For any p X 1 vector a, the ratio

2.1) P(a) = a'Ta/a'=a

has the x distribution, and
(II) For any p X 1 vector b, the ratio

(2.2) Q®) = b'’=""b/b'T '

has the Xa—p41 distribution.

Particular examples of (I) and (II) are very familiar. For example, suppose
t1 and o1 denote the first diagonal elements of T and X. Then the x5, distribution
of t;1/o1 is an example of (I). Again, regarding T as a dispersion matrix of a set
of p variates, suppose ti.ss..., denotes the residual dispersion of the first variate
after fitting the best linear function of the remaining p — 1 variates. More
precisely, tiy.ss..., = 1/t where " is the first diagonal element of T~ Similarly,
define oy1.93...p = 1/0"" where ¢ is the first diagonal element of £~'. Then the
familiar x%_p41 distribution of ti1.s5..p/011.05..p = o'/t is an example of (II).
The general forms of (I) and (II) follow from the above particular examples
together with the linear invariance property of the normal N (u, ) distribution
related to the W (=, n) distribution.

It is convenient to have a representation of this situation in geometrical terms

Received January 10, 1963.

1 This research has been supported in part by the United States Navy through the Office
of Naval Research, under contract Nonr 1866(37). Reproduction in whole or in part is
permitted for any purpose of the United States Government.

1414

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [[& )2
The Annals of Mathematical Statistics. BINORN

WWWw.jstor.org



A PARADOX CONCERNING INFERENCE 1415

a'x=C
F1g. 1. The geometrical entities required for a geometrical description of T, =, P(a)
and Q(b).

as in Figure 1. Here E and e represent the concentration ellipsoids with equations
x T 'x = 1 and x’=7'x = 1, respectively. O denotes the origin, and B; and B, are
points where the line joining O and b meets ¢ and F, respectively. The hyper-
planes a'’x = v and a'x = C are tangent to ¢ and E, respectively; 4 is the point '
of contact of the former and A4 is the intersection of the line 04, with the latter.

It is easily checked that P(a) and @ (b) in (2.1) and (2.2) are related to line
segment ratios as in Figure 1. Specifically,

(2.3) P(a) = (04,/04,)’, and
(2.4) Q(b) = (0OBy/OB;)*.

Note that, given =, a and b may be chosen so that 4; and B; coincide. It is then
clear that 04, = OB, so that P(a) = Q(b) for this a and b. This inequality is
reflected in the x5 and x5_p41 distributions assigned to P(a) and Q(b), the
former being larger in the sense that the c. d. f. of x5 is uniformly less than the

c. d. f. of xo—pi1 -

3. A lemma. Suppose H(T) denotes a posterior distribution assigned to =
when T is observed. For any non-singular C the original coordinates x for the p
underlying variates may be replaced by y = Cx and, in the new coordinates, the
dispersion and covariance matrices become CTC’ and C=C’, respectively. For
statistical methods based on the multivariate normal distribution it is natural to
require that an inference be free of the choice of the coordinates y. Accordingly,
H(T) will be said to be linearly invariant if, when = has the H(T) distribution,
then C=C’ has the H(CTC’) distribution. Linear invariance of H(T) implies
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that P(a) and Q(b) in (2.1) and (2.2), regarded now as functions of random =
for given T, again have distributions which are free of the choice of a, b and T.

LemMa. For any lbnearly tnvariant posterior distribtuion of = given T, the dis-
tribution of P(a) must be smaller than or equal to the distribution of Q(b), in the
sense that the c. d. f. of the former must be uniformly greater than or equal to the
c. d. f. of the latter.

The proof is easily given in terms of line segment ratios. When FE is regarded
as fixed and e as random, a and b may be chosen so that a’x = C is tangent to
E at B,. (See the dotted lines in Figure 1.) In this case it is clear from the
geometry that

3.1) 04,/04, < 0B,/0B;
so that P (a) < @ (b) and the result follows immediately.

4. Discussion. A consequence of the above lemma is that it is impossible,
when T is regarded as fixed and X is regarded as random, to continue to regard
P (a) and Q (b) as having the x5 and x7—p+: distributions as specified by proper-
ties (I) and (IT) in Section 2. Indeed, to continue to regard P (a) as having the
x. distribution is to imply that Q(b) has a distribution at least as large,
where the term large is used as above. Or, to continue to regard @ (b) as having
the xi_p4 distribution is to imply that P(a) has a distribution at least as
small.

On the other hand, I believe that P (a) and @ (b) are often regarded as pivotal
quantities on which to base confidence or fiducial statements about a'Za or
b’=""b, and that the essential feature of such pivotal quantities is that one shall
continue to regard their stated distributions as valid for inferences when the
observable T is fixed. Consider a specific situation where p = n = 100. From
Property (I) of Section 2, #;/0y1 is regarded as a xiw random variable given X.
From this, one is led to make confidence or fiducial statements consistent with
the assertion that #1/ou is a xie random variable where ; is fixed at its observed
value and oy is regarded as an unknown variable. Thus one is led to the loose
assertion:

(A) The unknown oy, is roughly of the order of #:/100 where #; is known.

Similarly, from Property (II) of Section 2, one may base confidence or fiducial
statements on the xi pivotal quantity #i.ss...n/011.93...» and be led to the loose
assertion:

(B) The unknown o11.93..., is roughly of the same order as f.53..., Where fi.0s...p
is known.

Within the tradition of the past thirty years, the temptation is very strong to
regard assertions such as (A) and (B) as roughly acceptable inferences about
the unknown quantities o and o11.25..., - Yet, if one desires inferences consistent
with an overall linearly invariant posterior distribution, the foregoing inferences
are contradictory, and one or other of them must be altered by a factor of roughly
100. In general, the paradox appears in extreme form only when p is close to n
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and both are large, but, as a matter of principle, the contradiction between the
two types of confidence or fiducial statements appears for any p and n.

Lindley (1958) has also demonstrated the incompatibility of certain confidence
or fiducial statements with any posterior statement, but with a restriction to
Bayes posterior statements. Again, the present example has features in common
with that of Stein (1959) who gave an example of wide discrepancy between a
fiducial statement and a confidence statement for the same unknown parameter.
In the present situation there is a pair of confidence statements for different
parameters, at least one of which must be widely discrepant with any fiducial
statement deduced from a linearly invariant joint fiducial distribution of all the
parameters. One might suspect that this phenomenon is due to my requirement
of linear invariance, but I incline rather to the view that it is simply an illustra-
tion of the general failure of confidence statements to agree with posterior dis-
tributions, and I suspect that similar examples could be found where an
invariance restriction is not involved. The present example reinforces my general
view that the confidence argument cannot be trusted when posterior probability
statements are required.

It is of interest to see what becomes of Assertions (A) and (B) when certain
obvious linearly invariant posterior distributions are assigned to X, namely when
=7 is assigned one of the family of Wishart distributions W (T, k). The par-
ticular choice & = n appears plausible because the original assumption of a
W (%, n) distribution for T is simply inverted into a W (T, n) distribution
for =7". For general k, the W (T, k) distribution results from a formal Bayesian
argument with prior density of £~ proportional to

!zlé(—n+p+l—k),

c.f., Geisser and Cornfield (1963).

From Properties (I) and (II) of Section 2 with T, = and n replaced by =7,
T and %, respectively, the quantities P (a) and Q (b) are assigned xi_p+1 and
x; distributions, respectively, as posterior distributions depending on random =
given T. This is to be contrasted with the x5 and xa_p41 distributions originally
assigned to the same pair of quantities. Note that the posterior distribution
interchanges the sizes of the two distributions in accordance with the lemma of
Section 3. Consider the specific case p = n = 100 and suppose that k¥ = n. Then,
under the posterior law, Assertion (A) must be replaced by:

(A*) The unknown oy is roughly of the same order as #;; where #; is known.

Similarly Assertion (B) is replaced by

(B*) The unknown oi.ss.., is roughly of the order of #i.s...,/100 where
011.23-++p »

The change from (A) and (B) to (A*) and (B¥) is quite startling. Nor are
matters improved by altering the choice of k, for this merely has the effect of
making (A) more like (A¥) at the cost of making (B) less like (B*), or vice
versa. The question of what constitutes a reasonable posterior inference about =
appears to me to be wide open.
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