CORRELATION AND COMPLETE DEPENDENCE OF
RANDOM VARIABLES

By H. O. LANCASTER
Unaversity of Sydney

1. Introduction. In the bivariate joint normal distribution, zero correlation
implies independence and unit correlation implies that one variable is a linear
function of the other. The coefficient of correlation in such a joint normal distribu-
tion is, moreover, a parameter determining the distribution once the means and
variances have been given. Between the limits of zero and unity, an interpretation
can be given to the absolute value of the coefficient of correlation. Without the
hypothesis of joint normality it can no longer be assumed that zero correlation
implies independence; in fact, in the general case, a necessary and sufficient con-
dition for independence is that every standardized function of the first variable
should have zero correlation with any standardized function of the second vari-
able. Necessary and sufficient conditions are now given for the complete mutual
dependence of random variables. Examples are given to show that the results
cannot be improved and that certain measures of dependence, valid for the
normal distribution have little interest in the more general case.

2. Complete mutual dependence of random variables. A random variable ¥
will be said to be completely dependent on a random variable X if Y takes only
one value for each value of X with probability one. More formally if there exists
a single valued function, ¥ = f(X), so that the set {(z, f(z)), all z} is measur-
able and has probability one, then ¥ will be said to be completely dependent on X.
If also X is completely dependent on Y, the two variables will be said to be mu-
tually completely dependent.

ExamrLEs. Let X be rectangularly distributed in the open interval (0, 1)
in each of the following examples

(2i) Let Y = —1when X £ %, Y = +1 when X > . Then Y is completely
dependent on X but X is not completely dependent on Y.

In the following examples, X and ¥ are mutually completely dependent.

(2.i) Let Y = aX 4+ b, where @ # 0 and @ and b are constants.

(2.iii) Let Y be any strictly monotonic function of X.

(2.iv) Let X and Y be related by any bi-unique transformation,

(2.1) Y = f(X), X=/fNY),
true with probability one.

Let now X and Y be random variables with a general bivariate distribution
function, F(z, y) and marginal distribution functions, G(z) and H(y). E is
used as the operator for taking mathematical expectations or integrating with
respect to the probability measure, F(z, y).
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The main theorem will be established with the aid of the theory of ortho-
normal functions, so that it will be true only with probability one. A random
variable with finite variance (or square summable function) is said to be nor-
malized if it is centred and scaled to have zero mean and unit variance. Nor-
malized random variables cannot be degenerate. Correlation between two
random variables can be defined if and only if each has finite variance. Two
random variables, {1(X, Y) and {»(X, Y), will be said to be equivalent in the
mean square sense, or more briefly, substantially equivalent if

(2.2) E(fi — &)’ = f {ca(z,y) — sz, y)} dF (z,y) = 0.

In other words, {; and ¢ are equivalent if {; = {, almost everywhere with respect
to the probability measure, F(z, y).

Lemma 1. If two normalized functions are equivalent, they have unit correlation
and conversely.

Proor.

(23) E(§1 —_ §2)2 = Eg'% —_ 2E§'1§'2 + E’§‘§ = 2 — 2corr (g’l, 5'2)

Lemma 2. The normalized functions having wnit correlation with a given nor-
malized function form an equivalence class.

Proor. Only the transitivity needs proof. Let ¢; and ¢ have unit correlation
with ¢. Then

(24) BEGi— &) ' =BG =)'+ E@— ) — 2B — ) (52— §) = 0,

for the first two integrals vanish by hypothesis and the third by an application
of the Bunyakovsky-Schwarz inequality.

TrroreM 1. Let {2}, 2¥ = 1, and {y®}, ¥© = 1, be complete sets of ortho-
normal functions defined on the marginal distributions, G(x), and H(y), of the
random variables, X and Y, which have a joint distribution function, F(z, y). Then
for the complete mutual dependence of X and Y, either of the following conditions
is necessary and sufficient:

(1) the matriz of correlations, A, defined by

(2.5) a;; = corr (29, y?) = /x(")y(") dF (z,y), 1>0,7>0

1s orthogonal,

(ii) every mormalized function of X (or Y') has a correlation of +1 with a sub-
stantially unique normalized function of Y (or X).

Proor. (i) implies (ii) for the elements of {y®} can be written as the elements
of a vector, y. Defining a new set by

(2:6) v" = Ay,

the matrix of correlations between the elements of {z”} and {y*?} is the unit
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matrix, for
(2.7) Exy*” = Exy™A” = AAT =1,
where we have used the convention that E(z;;) = (Ez;). Now let ¢ be a nor-

malized function of X. It follows from the usual theory of orthonormal functions
that

(28) E=2 b2, Xbi=1 b=0.
If n = > :by™®, then the correlation of £ and 7 is given by
(2.9) E(tn) = Eb"xy*™b = b"1b = 1,

and by Lemma 2, 1 is substantially unique.
(ii) implies (i). For let {z} be a complete orthonormal set on G(z). Then

it is given that there is a set of functions, {y*®} say, such that
(2.10) Ex®y*® = 1, i=1,2, -

where each of the y*® has unit variance. Then {3*®} is a set orthonormal on the
marginal distribution, since it is orthonormal on the bivariate distribution, for

(2.11) By*@y*® = Fy*O (o ® _ g®) 1 g0 _ g0y ® 4 gpp®

The first two integrals vanish because of the Bunyakovsky-Schwarz inequality
and the third because {z”} is orthonormal. Now {y*®} may be not complete on
H (y). If not, let there be adjoined the orthogonal complement of {y*?} and call
it {z”}. But by hypothesis orthonormal functions in X, { ) say, can be found
such that Bw'”z'” = 1. By the argument above, each v is a square summable
function of X orthogonal to each z”. This is a contradiction unless {w’}, and
hence {z?}, is empty. {y*®} is therefore complete with respect to H(y) and is
consequently an orthogonal transform of any other complete orthonormal set,
{y*”}. It follows that

(2.12) y = A'y*, A orthogonal, and A = Exy”.

The theorem will now be proved for condition (ii).

NEcEssITY. Suppose that the variables are completely mutually dependent and
let £ = £(X) be an arbitrary normalized function. For any point of increase of
H(Y) define 9 = 9(Y) = £(X). Since Y determines a unique X a.e., this rule
defines % uniquely as a function of ¥ and obviously the correlation of £ and 7 is
unity.

SurriciENcy. The method of proof is to make increasingly fine partitions of the
spaces of the marginal variables. For k = 1, 2, 3, --- | let the space of the dis-
tribution of X be partitioned into n; sets, A5”, such that P(X e A£”) is not zero
for any <. Then this partition also determines a partition of the space of the
distribution of Y into n; sets, BS?, and P(Y & B{”) is not zero for any ¢. For
suppose that P(X ¢ A{”) = p 0. Then a normalized variable £” may be
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defined to be —+/{p/(1 — p)} when X is not in A{” and to be v/ {(1 — p)/p}
when X is in A£”. By hypothesis there is a normalized function of ¥, 7‘°, such
that En“¢? = 1. 9 is therefore also a step function with two distinct
values and partitions the space of the distribution of Y into Bf” and its
complement. Further, the intersection of A$? and the complement of By QN

empty, and similarly with Bf” and the complement of A{”. The bivariate dlS-
tribution is thus partitioned into two disjunct pieces. It is readily seen that the
intersection of A{” and Bf? is empty if ¢  j since B{” lies in the complement
of B{”. The space of Y is broken into n, disjunct pieces. If possible, let the space
of the distribution of ¥ be subpartitioned into sets, {B;}, each of which is
associated with positive probability. This in turn leads to a refinement of the
partition of the space of the distribution of X into the sets, {451}, say, and the
bivariate distribution is broken down into 7nz4; disjunct parts. The notation has
implied that X and Y are numerical variables but this is not necessary for the
argument. The partitioning of the marginal probability spaces can proceed to
any assigned degree of refinement or a stage is reached when no further partition
is possible, as in the discrete distributions; in either case we have thus set up a
bi-unique transformation,

(2.13) XA > YeB?, or

(2.14) X =fY), Y=f(X).

3. Correlations in arbitrary distributions. We now construct some bivariate
distributions to show that generalizations from the normal distribution to other
distributions may not be useful. For this purpose, we will use mixtures of bi-
variate distributions and hence we need to be able to specify complete ortho-
normal sets on mixtures of marginal distributions. To simplify the discussion, we
choose two distribution functions, G(z) and J(x), such that there is no set of
points, to which positive measure is assigned by both distributions: we can say
that the two spaces are disjunct. A mixture can be obtained by taking a linear
combination,

(3.1) K(z) = 8:G(x) + B:J (%), 0<B;<1L,B+B=1

Lemma 3. If {u'®} and (v} are complete sets on G(x) and J(x), respectively
and u'® = v'¥ = 1, then a complete set on K(z) can be obtained by means of the
following:

EP(x) = 1 for both spaces,

EP(z) = — (B/B)} for the space of G(z),
= + (B1/B2)} for the space of J (),
(3.2) E*(z) = gt u®,i=1,2,--- for the space of G(z),
= 0 otherwise.
E* 0 (z) = i@ i =1,2 --- for the space of J(x),

= 0 otherwise.
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If either G(x) or J(z) has only a finite number of points of increase, some nota-
tional changes will have to be made in (3.2).

A bivariate distribution is said to be ¢*-bounded with respect to the marginal
distributions or simply ¢-bounded if

(33) #+1= [ 0y)d6e) () < =,

where Q(x, y) is the Radon-Nikodym derivative of F(zx, y) with respect
to G(z)H(y); Uz, y) = dF(z, y)/{dG(xz) dH (y)}, Lancaster (1958). A finite
value of ¢’ can be given an interpretation,

(34) = T d,
Y

where a;; = EzPy?;4 > 0,5 > 0, and {z”} and {y®} are complete sets on the
marginal distributions. Of the following examples, only the first is ¢’-bounded.

ExamPLE 3.i. Let the random variables, X and Y, have a bivariate distribution
uniform on the sides of a square with corners at (==1, =4=1). The marginal dis-
tribution of X can be expressed in the form (3.1) with 8, = 8. = %, G(x) being
absolutely continuous with the density function, G’ (z) = %, on the open interval
(—1, 1) and J(z) having saltuses of % at &=1. The complete set is £”(z) = 1,
EP(z) = —1for —1 <z < 1k%(z) = +1forz = +1 and K (z) = 0 other-
wise. Corresponding to the k% (z), is v/2u'® where w® are the normalized
Legendre polynomials. There is only one k**(z), namely ¥®(z) = =1
according as ¢ = =1 and k¥ (z) = 0 elsewhere. All other £**"(z) are not
defined, so that the notation can be changed so that £®”(z) becomes k“*?(z)
for ¢ > 1. There is but a single non-zero correlation namely one of —1 between
variables of the form k®(z). ¢* = 1.

ExAMPLE 3.ii. A mixture of a uniform distribution along the straight line from
(—1, —1) to the origin with a second uniform distribution over the interior of a
square with corners, (0, 0), (0, 1), (1, 1) and (1, 0). In this case, the orthonormal
set is given by (3.2) with £®?(z) and k**"(z) orthonormal polynomials on
the two rectangular distributions on the intervals (—1, 0) and (0, 1) respec-
tively. The correlation between &® (X) and k®(Y) is +1, between k®”(X)
and £®?(Y) is +1, and between k%1 (X) and k**V(Y) is zero,i = 1, 2, 3,
-«+ . All correlations between unlike functions of X and Y are zero. ¢ is infinite.
There is an infinity of maximal correlations of unity. It may be noted that for
every positive value of 8;, there is an infinity of unit correlations and ¢ is
infinite. A measure of dependence should give some weight to the fact that there
is a probability of 8; of knowing the exact value of Y after sampling X. If 8, is
very small, knowledge of X will yield little information on Y.

ExaMpLE 3.ii. A mixture of two distributions, the first a uniform (singular)
distribution along the diagonal and the second a uniform distribution over the
interior of a square with corners at (==1, 4=1). In this case, the complete ortho-
normal sets are the standardized Legendre polynomials. The correlation between
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PP(X) and P?(Y) is 81 8;;. ¢° is unbounded. It is easily verified that the
maximal correlation is 8; and that any normalized function g(X) has a correla-
tion of B with ¢(Y).

ExampLE 3.iv. A mixture of a uniform (singular) distribution along the line,
joining (—1, —1) and (41, +1), excluding the end points and a distribution
of four weights 1 (1 + pXY), |p| < 1 at the four points, (&1, ==1). The ortho-
normal set is given as in (3.2), k®”(X) being the standardized Legendre poly-
nomials ¥ (X) taking values & 837, all the other odd functions not being de-
fined. The correlation between k™ (X) and £® (Y) is unity. The correlation of
the pairs of the even series is also unity. The correlation of £ (X) with £®(Y)
is p. In this example, there is an infinity of unit correlations and a single
correlation not unity. This last is thus sufficient to ensure that X and Y are not
mutually completely dependent. The distribution shows that Linfoot’s (1957)
information measure of correlation can be unity without complete mutual
dependence.

Certain generalizations, useful in normal correlation, do not carry over to such
general distributions.

(1) ¢". In normal theory, ¢* = 0 implies independence; and infinite ¢* implies
mutual complete dependence. Examples 3.ii, 3.iii and 3.iv show that ¢° can be
infinite without the variables being mutually completely dependent.

(2) The maximal correlations. In normal theory, the maximal correlation is
lo|; if the maximal correlation is unity the marginal (normal) variables are
mutually completely dependent. Examples 3.ii and 3.iv show that this does not
suffice to give mutual complete dependence in the general case. Gebelein (1942
and 1952) found, however, that it was sufficient in continuous distributions for
X to have unit correlation with Y. This can be deduced as a corollary from
Lemma 1.

(3) Averaged correlations. In the contingency tables various authors have
suggested averaged values of the squares of the coeflicients of correlation, such
as ¢'/+/{(r — 1) (¢ — 1)} or ¢’/(r — 1), where r is the number of rows and ¢
is the number of columns. It might be thought that some average value of the
correlations or their squares might be defined for the general case. Example
3.iv shows that this hope is illusory; for in this example, we would have a limit-
ing ratio of unity without complete mutual dependence. The examples also
show that there is no necessary relation between ¢ and the maximal correlation
except that the latter is bounded by ¢°. Reviews of various measures of associa-
tion have been given by Gebelein (1941), Rényi (1959) and Hoffding (1942).

Condition (ii) in Theorem 1 of this paper can be regarded as an extension of
the main theorem of Lancaster (1963).
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