COMBINATORIAL RESULTS IN FLUCTUATION THEORY

By Cuarres Hossy' AND RonaLp PYkE’
University of Washington

1. Introduction and summary. The main purpose of the paper is to prove a
combinatorial extension of a recent theorem of Baxter [6] concerning partial
sums of random variables. The method of proof is closely related to that used by
Sparre Andersen [1] in his basic 1949 paper which initiated the combinatorial
approach to problems in fluctuation theory. The method does not seem to have
been used since.

The central idea behind Sparre Andersen’s method, as it is used below, is
conceptually very simple. It consists of verifying the validity of two operations
on the finite sequences of real numbers under consideration. The first operation
is referred to as “‘shrinking”; and the second as “‘counting”. In order to prove an
invariant combinatorial result for such finite sequences of numbers, one shows
first that if the result is true for a given sequence, it remains true as one de-
creases (or shrinks) the smallest number in.the sequence (the shrinking Lemma
2.1) and, second, that if one inserts a sufficiently small number into a sequence
for which the theorem holds, then the result also holds for the new sequence
(the counting Lemma 2.2).

Section 2 contains the fundamental combinatorial theorem concerning the
joint behavior of the number of partial sums greater than zero and the number
of them less than the last partial sum. Section 3 presents a probabilistic frame-
work for the results of Section 2, as well as some further results.

2. A combinatorial theorem. Let ¢ = (¢1, ¢c2, + -+, ¢a) be a fixed sequence of
n real numbers. For convenience, assume 0 < ¢; < ¢; < -+ < ¢, . Let 8, denote
the set of all 2"n! sequences that may be formed from ¢ by using all possible
permutations, and all possible attachments of a 4+ or — sign to each coordinate.

For any sequence z = (21, @2, - -, ,) of real numbers set so(x) = 0, s;(x) =
o+t - Fzxijforj=1 2 ..., n We will refer to both the sequence z
and the sequence of partial sums, (s, 81, *** , 8») as a path. With each sequence

z € 8., associate the ordered pair of integers (m, k) where m is the number of
positive partial sums s;(z), and k is the number of positive reversed partial
sums s, (x) — s;(z). The sequence z is then said to be of type (m, k). We set
vn (m, k; ¢) equal to the number of sequences z ¢ S, which are of type (m, k).
Clearly 0 = v,(m, k; ¢) = 2"n!. For any sequence ¥y = (41, 42, -+, Ya) Of
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real numbers, let NV, (y) and M, (y) denote respectively the number of positive
partial sums s;(y) and the number of positive reversed partial sums s, (y) —
8:(y), @=0,1, ---,n).Set L, (y) equal to the first subscript j for which s;(y) =
max{s;(y); 0 = ¢ = n}. It is desirable to exclude the possibility of some of the
partial sums being zero, or equivalently, to postulate that all of the partial sums
are distinct. To this end we make the

DrriNiTION. The sequence ¢ is said to have property D if for every sequence
z eS8, si(x) # 0forz > 0.

It is straightforwardly checked that if ¢ possesses property D, then
va(m,m —m;c) =0for0 =< m =< n,and Dm0, (m, k;c) = 2"n!, for0 < m,
k= n.

The main result to be proved in this section is that v, (m, k; c¢) is a constant
for all choices of ¢ which have property D. The invariance of the counting function
va (m, k; ¢) is obtained by an argument which first proves a partial invariance
and then uses this to proceed inductively to compute the explicit form of
va (m, k; ¢) and to complete the invariance argument.

TuEOREM 2.1. For all non-negative integers n, m, k satisfyingn = 1, m + k < n,
and for all sequencesc = (c1,C, *++ ,¢a),0 <1 < e < -++ < ¢y, Which possess

property D,
coy = (2m\(2k pn1emem 1y,
(2.1) va(m, k; ¢) = <m>< k) 2 (n — 1)!

Notice that the condition m + k < n is equivalent to specifying that s, < 0.
Further, if z = (1, -, za) is of type (m, k), then (—x1, —x2, -+, —x,) is
of type m — m, n — k) and (xn, Tp1, -+, 21) is of type (k, m). It follows
that v, (m, k; ¢) = va(m — myn — k;¢) = va(n — k,n — m; c)= v, (k, m; c).
Thus (2.1) leads to a formula for v, (m, k; ¢) for all integers m, k satisfying
0=mk=nm-4k#n.

The proof of Theorem 2.1 uses two lemmas. For any n-tuple ¢ =
(1, €2, +++, ) for which0 < ¢; < -+ < ¢,, and any 6 ¢ (0, ¢1), define the
shrinking transformation, 75, by Ts(x) = (1 — 8, ca, * -+, ¢x). Write 8,5 for
81y - If « €8, , denote by 2’ the element in 8, ; which is formed from T’ (c) in
the same way as z is formed from c. It will suffice to prove that v, (m, k; ¢) does
not change when ¢ is replaced by 7T;(c), provided that ¢ and T;(c) both have
property D. However, the argument used below to prove this result can be
modified to show that v, (m, k; ¢) is unchanged if ¢ is replaced by any other
sequence of n numbers possessing property D.

Lemma 2.1. If a sequence ¢ = (c1, ¢, *** ,€),0 < a1 < -+ < ¢, possesses
property D, then v, (m, k; ¢) = v, (m, k; Ts(c)) for all integers 0 = m, k < mn,
m+ k < nandall de (0, c.) for which Ts(c) possesses property D.

Proor. We must obtain a 1-1 correspondence, ¢;, between 8, and 8,5 , such
that for all z € 8., = and ¢; (x) are of the same type. The correspondence we shall
define is illustrated in Figure 1. Observe first that there are only finitely many
values of 8, say 6; < & < ---, for which T;(c) does not possess property D.
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Xa/ \X3
Xz
)\
WV xe
|
This path (x1, -+, 27) is of type (2,1). Switch the first 6 steps of the path as

The smallest increment is x4 . shown.

!

-X3 X2 m
-X4+Sg*€ 1 Xy \XS
~J

Shrink x4 until type changes, namely, Continue shrinking, and the path re-
until s = 0. turns to type (2,1).
F1e. 1

These are simply the values of § for which at least one partial sum of a member
Of S(cy,--- ey 18 €qual to ¢; — 6. It follows from the definition of 8, that z and 2’
are of the same type for every z ¢8, if 0 = & < & . It will therefore only be
necessary to consider d ¢ (8, 8;) and to exhibit the mapping ¢4 for this choice
of d. For all other values of d, ¢, will be a composition of a finite number of
mappings of this form.

Let © consist of all z £ 8, such that z and z* are of different types. For each
z ¢ D there is a subscript 7 = r(z) at which either s, (z) and s, (%) or s, (x) —
s, () and s,(@*) — s (z*) have opposite signs. One needs to show that this
subseript » = r(z) is unique, and that exactly one of the above cases obtains.
Assuming for the moment that these facts are true, define ¢4(x) = (¢ (x))?
where ¢ is the 1-1 mapping of S, onto itself given by

o(x) =2zifred
= (=, oo, =Xy, Trga, 0, Ta) if 8, @)s (%) <O,
(2.2) ‘ )
= (xly ity Ty Ty, v, _x?'+l) if [sﬂ(x) - sr(x)]
s @) — s @] < 0.
It is clear that ¢4 is 1-1.

It remains to show that r = r(z) is unique, and that = and ¢4 (z) are always
of the same type. These two results are intuitively fairly obvious from Figure 1.
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However, a formal proof of the second result requires a careful treatment of
several cases, so it is included here. The proof parallels that in [1].

To show that x and ¢,;(xr) are of the same type, observe first that if
sgnfs, (&) — s @)] # sgnls, @) — s,@%)], then for y = (—2n, —Tns, *+-,
—1;), one obtains 7(y) = n — r(zx) and sgn[s,q) ()] # sgnls.q) (y*)]. Further-
more, z and ¢4(x) are of the same type, say (m, k), if and only if both y and
¢4(y) are of type (n — k, n — m). Therefore, without loss of generality, we
assume that sgns, )] # sgnls, @")]. Then by (2.2) ¢(x) = (==, -++, —a1,
Zrp1, **° , &n). Consequently

sifp(@)) = sri(x) — s, (x) HOSZI=Sr

(2.3)
= s;(x) — 2s,(x) ifr=¢=n.

Observe that r(z) = r(¢(x)). We shall require the following equalities, where
1% 0,1 % 7
sgnls; @)] = sgnls: ()],  sgnlsi(@) — s, (x)] = sgnls;@)],

sgnls, (x) — s;(x) — s, (@)] = sgnls.(x) — s:(@)] A =7 <7r).

The second equality follows from the ‘first and the fact that sgn[s,(z)] #
sgnls, (z%)], since at least one of the equalities sgn[s; (z) — s.(z)] = sgn[s;(z)] or
sgnfs; @*) — s (2*)] = sgn[s; (z*)] must hold. A similar argument will yield the
third equality if one observes that s, (¢ (z)) — s—i(@@)) = sa (@) — s:i(x) —
sy (z). Hence sgn[s, () — s:(x) — s,(x)] = sgn[s, @) — s:@®) — s @)

If 1 £ ¢ < r, it follows from (2.3) and (2.4) that sgn[s,(¢a(z))] =
sgn[s: (¢ (@))] = sgnls,_: (x) — s, (x)] = sgn[s,—; (z)]. Similarly, if r < ¢ < n, then
sgnls; (¢a(@))] = sgnls:(¢@))] = sgnlsi@@)) — s (@))] = sgnlsi(z) —
s,(x)] = sgn[s,(z)]. Finally, sgn[s,(#a(x))] = —sgnls,(¢(@))] = sgnls (x)].
Therefore z and ¢, (z) have the same number of positive partial sums.

If r £ ¢ < n, then sgn[s, (da(x)) — s:(da(x))] = sgns. @ (x)) — si@))] =
sgnls, (z) — s (z)]. If 1 < ¢ < r, then sgn[s, (¢a(x)) — s:(pa(x))] = sgnls. (@ (2))
— 8i(p())] = sgnls. (@) — s—i(x) — 8, (@)] = sgn[sa (x) — s,—i(2)]. Thus z and
¢a(z) have the same number of positive reversed partial sums. This completes
the proof of Lemma 2.1.

In the above lemma it is proved that v,(m, k; ¢) remains constant as one
shrinks the smallest coordinate of ¢. The second step in the proof of Theorem
2.1 is to show that one can recursively evaluate v,(m, k; ¢) when the smallest
coordinate of ¢ is sufficiently small.

2.4)

Lemma 2.2. Letc = (ci,¢2, -+ ,¢),0 < ¢ < -+ < ¢a, be a sequence pos-
sessing property D. Let co > 0 be less than the absolute value of every mon-zero
partial sum of every sequence in S, . Set ¢ = (Co, 1, *** , €a). Then ¢ possesses

property D and
v (m, ;') = @m — Dou(m — 1, k; ¢)

2.5)
4+ @2k — Dva(m k — 1;¢) + 2(m — m — k)v.(m, k; c)
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for all integers 0 < m, k < n, m + k < n. It is understood that v, (i, j;¢) = 0
for negative values of <, j,n — 1, or n — 7.

Proor. Clearly ¢ possesses property D. To check that (2.5) is valid, observe
simply that there are always 2 (n 4 1) ways that ¢, can be inserted into a sequence
in 8, to form a sequence in 8. . Namely, ¢, can be placed in any of n + 1 locations
and with either of two signs. If ¢ is inserted with either sign following the ¢th
coordinate of a sequence in 8, for which s; > 0, then s; &= ¢o > 0 and so the
resulting sequence in 8. has one additional positive partial sum. The same will
happen if ¢, is inserted with a positive sign at the beginning of the sequence. In
both of these cases the number of positive reversed partial sums remains un-
changed. Thus one constructs 2m — 1 sequences of type (m, k) in 8, from each
sequence of type (m — 1, k) in 8, . This justifies the first term on the right hand
side of (2.5). The other terms are explained in a similar manner.

Proor or THEOREM 2.1. We proceed by induction. The theorem is obvious for
n = 1. Assume the theorem is true for some value n = 1, and consider any
sequence ¢ = (¢, €z, - -+, Caq1) Of length n + 1 which satisfies the assumptions
of the theorem. By Lemma 2.1 it is possible to shrink the smallest element ¢; ,
and leave the problem invariant. Therefore, decrease ¢; until it is less than the
absolute value of every non-zero partial sum of every sequence in 8, . By Lemma
2.2, this implies that (2.5) is valid. Applying the induction hypothesis to (2.5)
yields

Vna(m, by ¢) = 2772y 1)!{(2m —1)2° (2;?__ 12)(2]5>

b =02 ()% D) b2 - m— w0 ()]

from which the desired evaluation of v,4; (m, k; ¢) may be derived.

As mentioned earlier, the shrinking method could be extended to show the
constancy of v,(m, k; ¢) over ¢ without using the counting lemma. Then to
evaluate the constant, one could attempt to obtain an exact count for some
conveniently chosen c. (Perhaps a sequence ¢ for which s;(c) < ciy1 could be
used, as it was by Sparre Andersen [1]). However, the above method seems
more straightforward.

Let pn,r(m1, ki, ma, ks ; ¢) denote the number of sequences z ¢ 8, for which
@1, 22, + -, 2) is of type (m1, k1) and @41, Triz, * -+, Ta) is of type (ma, ks).
Because of Theorem 2.1, we write v, (m, k) in place of v, (m, k; ¢).

CoroLLARY 2.1. For all integers my , ma , k1, ke, v and n, satisfying 0 < r < n,
and any sequence ¢ possessing property D,

(2.6) pnr(my ko me ke yc) = (:f) or(my , k1) va_r(ma , k).

Proor. This result is a consequence of the fact that all sequences z ¢ 8, for
which (z1, - -, x,) is of type (m1, k1) and @r41, < -+, Ta) is of type (mz, k)
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can be constructed by first selecting r coordinates of ¢ in one of the (f) possible
ways and then forming the required type of sequence from the two resulting
subsequences.

One application of this corollary is to obtain, by performing the appropriate
summation in (2.6), the combinatorial form of the result of Sparre Andersen
given as Theorem 5 in [2]. A second consequence of Theorem 2.1 is

COROLLARY 2.2. Let 02 (m, k; ¢) be the number of x € S, which have m partial
sums s;(z), for j = 1, greater than s; (x) and k reversed partial sums s, (x) — s;(x),
for j = 1, less than s, (x). Then if ¢ possesses property D and i < n,

v (m, k; ¢) = 2%! <;n> vni(m, k) = n(n — ) Toa(m, k).

Define ', (x) = N, (x) + M, (z) andJ,(x) = max{n — T, (x), T.(x) — n} —
1. These quantities have a uniform distribution as is stated in

CoROLLARY 2.3. If ¢ possesses property D, then

(a) card{z € $:Tp(x) = k} = 2" '(n — 1), 0 S k < 2n, k # n;

(b) cardf{x €S2 (x) =k} =2"(n — 1), 0 = k < n.

Proor. These results are stated as a corollary of Theorem 2.1 since indeed
they may be obtained from (2.1) by the appropriate summations. However, it
is possible to derive them directly by simply combinatorial arguments. To prove
(@) let ¢ = (c1, c2, **, ca) be a sequence possessing property D. For each
z €8, , form a new sequence of length 2n, namely * = (x1, 22, -+, Tn, —21,
—&y, -+, —,). Observe that for 0 < j < n, s;(z*) > 0if and only if s, (z) > 0,
while s,4.;(*) > 0 if and only if s, () — s;(&) > 0. Hence T, (z) is equal to
Naw (%) if Now (2*) < n and is equal to Nay (2*) + 1 if Nap (z¥) = n. Moreover,
s2a (") = 0. This latter condition, together with property D, implies by a known
result of Andersen [3] and Spitzer [8] that N, (z*) ranges over each of the 2n
integers 0, 1, 2, - -+, 2n — 1 exactly once as each of the 2n possible cyclic permu-
tations are applied to z*. This completes the proof of (a). The proof of (b) is
then immediate. (Actually, these proofs show that the results are valid when
only a special type of cyclic permutation with sign change is used, namely the
inverted cyclic permutations introduced in [7].)

The geometrical representation of a path given in Figure 1 indicates that
Theorem 2.1 is valid for sequences ¢ of vectors instead of real numbers. In fact
the following generalization is immediate.

Let 3¢ be an arbitrary Hilbert space over the reals. For z € 3¢, let K (z) denote
the open sphere with center /2 and radius ||z/2||, that is, K (zx) = {y ¢ 3¢:

ly — /2| < ||lz/2|}. Let ¢ = (c1, ¢z, - -, ca) be a sequence of elements of 3¢
for which s, (c) # 0. (Here the partial sum notation is the obvious extension of
that introduced earlier.). For each ¢ = 1, 2, ---, n, write ¢; = ¢ -+ ¢? where

ci and ¢} are, respectively, the perpendicular and projection of ¢; with respect to
the subspace spanned by s, (¢). Define 8. to be the collection of all 2"n! sequences
of length » which can be formed from ¢ by permutations and by forming the
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“conjugate” ¢; — c?. A path z ¢ 8} is said to be of type (m, k) if m is the number

of subscripts ¢ for which s, (z) ¢ K (s, () — s;(z)), and % is the number of sub-
seripts ¢ for which s, (z) ¢ K (s: (z)).

TrEOREM 2.2. For all non-negative integers n, m, k satisfyingn = 1, m + k < n,

and for all sequences ¢ = (c1, -+, ¢a) with ¢; & 3¢ and with (cf, ¢z, -+ -, c%) pos-
sessing property D,

2m\ ([ 2k\ n—2m—
(2.7) va(m, k; ¢) = <m><k>2 (g — 1)1,

Proor. This theorem is an immediate consequence of Theorem 2.1, as may be
seen as follows. In order that s,(x) ¢ K (s.(x) — s;(x)), it is necessary and
sufficient that [|s. (x) — [s. (@) — s:(@)])/2]° < |l[sa (@) — s:(x)]/2|]° or that
(2.8) s @) + sz @) < llsn @) — 7 @)].

A similar relationship may be obtained for s, (z) € K (s; (x). Since the subspace
of 3¢ spanned by s, (c) is 1-dimensional, it is isomorphic to the real line. The
proof is then completed by observing that for the case of real ¢;, (2.8) is equiva-
lent to stating that either s;(z) < 0 < s,(z) or s, () < 0 < s;(z). Furthermore,
as x varies over S;, the partial sums s?(z) vary over the partial sums of sequences
in 8» where ¢ = (cf, ---, ch).

It is worth pointing out that the definition of type (m, k) could have been
described geometrically as follows. Construct hyperplanes through s;(z) and
$a (), perpendicular to the line joining s,(z) and s,(z). Then a path is of type
(m, k) if s, (z) and m of the partial sums s;(z), 1 < 7 < n, are on opposite sides
of the hyperplane through s,(z), while s,(z) and & of the s;(z), 1 < 7 < n, are
on opposite sides of the hyperplane through s, (x).

Let £ be any subspace of 3C. For z ¢ 3¢, write x = z* + z” for the unique
decomposition of z determined by £, and set z* = z* — 2”. For any sequence
y = (Y1, Y2, -+, ya) of elements of 3¢, let ¢(y) denote the conjugated-cyclic
permutation of y given by ¢ (y) = (Y2, ¥s, =+, ¥n, yr). Let ¢ = (cy, €2, - -+, €n)
be a sequence of elements of 3¢, and let

e:‘ = {C, t(c), t2(0)> Tt tn_l(c)}'

For xz e}, define J,(r) to be the number of subscripts ¢ for which
si(@)®? e K (sa(x)®).

THEOREM 2.3. Assume that for each x € CF and all © = 1, -+-, n — 1, 4t is
not true that s;(x)” 1 [s.(x)” — s:(x)"]. Then, for eachk = 0,1, ---, n — 1,
there exists exactly one element x & @F for which J, (z) = k.

The proof of this result is exactly similar to that of Theorem 1 in [7], even
though the latter theorem was stated for finite-dimensional spaces only.

3. Probabilistic interpretations and applications. Let X;, X,, ---, X, be
random variables defined on a probability space (2, @, P). The random vector
X = (X1, Xs, -+, X,) is said to be (i) exchangeable if its distribution func-
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tion (d.f.) is invariant under all permutations of the coordinate variables and
(i) symmetric if its d.f. is invariant under all sign attachments to the coordinate
variables. Set So = 0, S; = X; + -+ + X;,for< = 1,2, - -+, n. The random
vector X = (X1, X,, -+, X,) is said to possess property D if P[S; = 0] = 0
fort =1, ---, n. Let N, and M, denote, respectively, the number of subscripts
1 for which S; is positive and the number for which S, — §; is positive. Set
pn(m, k) = P[N, = m, M, = k]. The main results of Section 2 are rephrased in
probabilistic language in the following theorem.

Tueorem 3.1. If the random vector X is exchangeable and symmetric, and
possesses property D. then

(3.1) pa(m, k) = (20)™ (%Z‘)(%f) gt (m+k < n)

and
pn(myn_m)= Oa pn(m) k) =pn(kym) =p"(n_myn_k)

for all integers m, k, n with 0 < m, k < n. Furthermore

(32) PIN, = m] = (2’”)(2" - 2’") 4,

m n—m

Proor. Let Z = (Z1,2s, -+ ,Z,),0 < Z1 < Zy < --+ < Z,, be an ordering
of |Xi|, | Xa|, - -+ , | Xa|- Theorem 3.1 is then an immediate consequence of Theorem
2.1 applied to the relationship:

3.3) PIN.=m, M, =k|Z = 2] = v.(m, k; 2)/2"n!

It follows from the form of the expressions in (3.1) and (3.2) that p.(m, k) =
Pn (0, 0)P[N i = m] if m 4+ k < n. This is related to the type of result con-
tained in Theorem 2 of [2]. Also one sees that np, (m, k) = (0 + 1)ppya(m, k).
If one specifies in Theorem 3.1 that X;, X, ---, X, are independent and
identically distributed r.v.’s, whose common d.f. is continuous and symmetric
about zero, then one obtains the statement of the theorem which Baxter derived
in [6] using analytic methods.

All of the above results have direct application to stochastic processes. For
example, let {Z,: ¢ = 0} be a separable and measurable stochastic process, for
which every vector of increments (Z;, — Zy4n, -, Ly, — Zyn) for 0 £ 4 <
b+ hb<t+h=s- - <t +handk = 1,2, .-, satisfies the assump-
tions of Theorem 3.1. For fixed T' > 0, define U, and Wy to be, respectively,
the Lebesgue measure of the sets {¢ ¢ (0, T]: Z, > 0} and {t ¢ (0, T]: Z, < Z}.
If it is assumed further, for example, that the Z-process is continuous in prob-
ability at each te (0, T], then the usual limiting approximation argument
yields P[Ur < u, Wr < w] = (2/7T) (uw)? for all u, w = 0, u + w < T. These

generalized arcsine laws were derived by Baxter [6] for infinitely divisible proc-
esses.
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4. Remarks. A natural generalization of the concept of a path being of type
(m, k), which was introduced in Section 2, is to say that the path
= (T1,Z, -+, Zn)is of type (m, k;<, 7) if there are m partial sums above
s;(z) and k partial sums below s;(z). Clearly types (m, k) and (m, k; 0, n) are
equivalent. In [2], Sparre Andersen showed that the distribution of the number
of partial sums above s; is invariant, as was the number of (positive) partial
sums above s;. Unfortunately, the natural conjecture, that the number of
sequences z €8, of a specified type (m, k; ¢, j) does not depend upon the
sequence ¢, is false. In fact, if one counts only the number of sequences of type
0, 0; %, j), namely those having their maximum and minimum at s; and s;
respectively, one finds that the number depends upon the sequence ¢. For ex-
ample, consider n = 3 and sequences ¢ = (1, 3, 5) and ¢ = (2, 3, 4). There
are three elements of 8, of type (0, 0; 0, 1), namely (-5, 3,1), (—5,1, 3) and
(—5, 38, —1), while only one element of 8, is of this type, namely (—4, 3, —2).
Thus even though the individual distributions of the location of the maximum
and minimum partial sums are invariant, the joint distribution of these loca-
tions depends on the sequence ¢. This, in turn, implies that the set of all of the
ranks of the partial sums cannot have an invariant distribution.

Next, one might consider, for fixed m and k, (m + k =< n), the number of
sequences z € 8., for which s, (z) is the maximum partial sum and s,z (x) is
the minimum among the partial sums Sn+1(x), Smiz (@), + -+, s.(x). However,
this number depends on the choice of ¢, as is shown by the example constructed
above (form = 0,k = 1).

If, instead of looking for the minimum, we ask that s, (z) be the maximum

of Smt1 (), Smy2 (@), -+, s.(x), then a positive result is obtained. Formally,
let us say that a sequence x = (21, 22, ---, Z.) is of location type (m, k) if
L,(@) = mand Ly_pw (@m41, -+, T») = k. Then one may prove

TaEOREM 4.1. If ¢ = (a1, -, €.) satisfies property D, then the number of

sequences x £ 8, for which x 1s of location type (m, k), m + k = n, 7s given by

A
(41) _ (222)(2;)(2;) nl27(2k — 1)~
wherej =n —m — k.

Proor. This result follows immediately from Theorem 2.1 if one observes

that a sequence z ¢ 8, is of location type (m, k) if and only if (1, *--, Twm)
is of type (¢, m) for some 1 < ¢ < m, @my1, *** , Tmss) 18 Of type 0,k — 1),
and @m4r41, *°°, o) is of type (0, 7) for some 0 < ¢ = n — m — k. These

subsequences can be chosen from ¢ in Z)( k m) ways, while the other

terms in (4.1) can be seen to represent the number of ways of obtaining the
desired types if one recalls that v, (0) = v, (n) = D1 v, (%, n) for all n.
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The technique of shrinking and counting which was introduced by Sparre
Andersen in 1949 and is used to prove Theorem 2.1 above may be used to obtain
combinatorial results which are somewhat different in nature from Theorem 2.1.
One example of this is the result of Sparre Andersen (Theorem 5 of [4]), which
gives the number of paths generated by the n! permutations of a given sequence,
which have exactly k, (k = 0, 1, -+, n), coincidences with their respective
convex minorants. (See [4] for a precise statement of the result.) The proof
could proceed as follows. Consider a path, such as in Figure 1. Shrink one of
the path’s segments until a coincidence is about to be either lost or gained (i.e.
until 3 partial sums lie on a straight line.) Then interchange the two adjacent
subpaths between these 3 coincidence points, and then continue the shrinking
process. It is geometrically clear that the number of coincidences remains in-
variant. One could then proceed to make the actual count. This gives a very
straightforward proof, (although not the shortest (e.g. see [5])), which has the
advantage that it leads immediately to the generalization of the problem to
sequences of two-dimensional vectors with positive first coordinates (as studied
in [5] and in other papers referred to therein).
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