GENERATING FUNCTIONS FOR MARKOV RENEWAL PROCESSES

By MarceL F. NeuTts

Purdue University

A general matrix representation is given for the multivariate transition proba-
bility generating functions of a Markov renewal process with a finite number of
states. It is indicated how numerous derived probability distributions can be
obtained by simple substitutions. Finally an application is made to the distribu-
tion of the maximum length of a busy M /M /1 queue.

Let N(¢) = (Ny(t), -+, Nn(t)) denote a Markov renewal process with a
finite number m of states and with a matrix of transition probability distributions

Q = {Q:} 3], [4]. Set H; = 2 7.1 Q:i;j. The Q;;(t) are nondecreasing right-
continuous functions satisfying Q.;(0—) = 0 and H, () = 1 for all

%,7 = 1, --+, m. The random variable N;(¢) is equal to the number of visits to
state 7 during the time interval [0, ). The stochastic process Z; is referred to as
the semi-Markov process (S-M P) associated with the Markov renewal process.
Z, = i when state 7 is being visited at time ¢. We assume that P{Z, = ¢} = p;
with D 7, p; = 1. Let k = (ki, - -+, k) denote an m-tuple of non-negative
integers and define T (k) = inf {£:Ny(t) = ki, -+, Nm(t) = kn}, where it is
interpreted to be +  if the set is empty. Thus, T(k) is the random time at
which the Markov renewal process enters the state k = (ki, -, km). Let
Z(k) = Zrag and T'(k) denote the time instant at which the S-M P leaves the
state Z(k). We define the following transition probabilities for the Markov
renewal process.

(1) Ci(k,t) = P{T(k) < tand Z(k) = j}
and
(2) D,k t) = P{T(k) <t < T'(k) and Z; = j}.

It is clear that these distribution functions all vanish for ¢ < 0. In the sequel
we shall only consider them for nonnegative values of ¢. Let e; denote the ¢th
unit vector. The probabilities defined in (1) and (2) satisfy the following rela-

tions.
Cile:, t) = d:;p;

Ci(k,t) = 2. Cu(k — e;,1) *Q(t) fork = e

y=1
C(k —e;,t)=0ifk; =0
Dj(k, t) =[1 — H;(®)]*Ci(k,1).

(3)
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Let a superscript asterisk affixed to a function denote its Laplace-Stieltjes
transform. For example, Hj (s) = f3°_ e ** dH ;(t). We introduce the following
multivariate probability generating functions in whichz = (21,22, -+, 2m):

Gi(z,8) = 2 -+ 2. Ci(k s)a --- 2
ky=0 k=0

and
Kj(z,8) = 2 --- 2 Df(k 8z --- zhr
k=0 Km0
and the column-vectors

G* = [Gr(z’ 8)7 ) G:.(Z, 8)], K* = [KT(Z, S), R} K:(Z, s)]

The column-vectors G* and K* now have the following matrix representation.

THEOREM. For |z, < 1,2=1,--- ,m,
@) K*(z,5) = [I — A(H")IG¥(z, 5)

= [I — A(H]I - A(2)Q*T"A(z)p
in which
A(H*) = dla‘g (Hr(8>, ] H:(S)), A(Z) = diag (zl y " z'm)7

Q* = {QF;} and p s the column-vector [p1, -+ , Pm].

Proor. The first equality is simply the transform of the fourth equality of
(8). Moreover it follows from the other equalities in (3) that

G1(z,8) = pis + 2 2 QG (2, 9)

which implies the second equality in (4) if the inverse of I — A(z)Q" exists.
This is easily seen to be so since |2;Q5; (s)| < @,;( ). The numbers @,;( )
form an m X m stochastic matrix which therefore has spectral radius equal to
one. A theorem of Wielandt [5] then implies that the spectral radius of A(z)QY
is not less than one, which completes the proof.

A particular case. Discrete time finite Markov chains. If C;(k) denotes the
probability that in &y + --- + ks — 1 transitions a discrete Markov chain
reaches state j and has visited state » exactly &, times (v = 1, - - - m) then

Cj(k, 8) = Ci(k) exp [—s(ki + -+ + km — 1)]

Q* = ¢°P, G7(z, s) = ¢'Gj(ze”*) in which G;(¥) is the generating function of
the C;(k). After setting 2z ° = £; we obtain

G(¥) = I — A(OPTA(®)P

which was proved earlier by Neuts [2].
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Generating functions derivable from formula (4). Generating functions for
many related probabilities can be derived from K(z, s) by an appropriate choice
of the variables z; . If we set some of the z; equal to the same variable » we find
the transition probabilities of the S-M P which specify only the number of visits
to certain but not all states. If we set certain variables z; in (4) equal to zero,
we find generating functions for taboo-probabilities, i.e. transition probabilities
of events in which one specifies that certain states should not be visited.

Finally if we perform the substitutions z, = pe ™, (0 < p < 1), for all or some
of the variables z in which o, is equal to zero, plus or minus one we obtain gen-
erating functions for events defined with respect to algebraic sums of the random
variables N;(¢). Some detailed examples of these substitutions have been worked
out in the case of finite Markov chains in Neuts [2].

An application. We consider a single server Poisson ‘queue with input rate A
and service rate u. We wish to evaluate the probabilities 7 ;(¢) that in the time-
interval [0, ¢) there have been n transitions in the queue, the queue length at
time ¢ is  and neither of the queue lengths zero and b have been attained, given
that the initial queue length was 7, (0 < 7,7 < b).

Let us consider the b 4 1 state S-M P in which

Qii(t) =1 —¢™ ' 1=0,7=1
=NA+will —e®] j=i+1,i=1---,b—1;
=k/N+pll - j=i—1,4=1,---,b—1;

Q.:; may be defined arbitrarily for ¢ = b, for purposes of the problem studied here.
If we substitute this Q into formula (4) and set p = e;and 20 = 2, = 0, 2; =
- = 21 = u we obtain
K.T(O; U, - u, 0, 8) =1u Z u f e dr;.j(t)
n=0 0
fory=1,---,b— 1. Set

> u"/ e dri;(t) = P¥(u,s);
0

n=0
then
P?j(u; 8) = (l/u)K*(()’ Uy =0y U, 07 8) = [1 - H;‘(S)][(I - AQ*’)_l]ii
where A = diag (0, u, - - - , u, 0). After inversion of the jacobi-matrix I — AQ*
we find |
J—i (i i\ ([ b—d b—j
P - s < Au > E-8)E" —-&7) for i > 4
=TT Gom@E— 0 oIE?
s wo NP EH-HET -8 .
= f <
s+)\+u<8+>\+u> & —a)(E—8) orr=Eh
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where
B=H14+ 1 — s+ A+ o) 6= 3L — 1 — (s + M+ )71
If we set 1/cos « = 2(Au)*u/(s 4 A + ) we find for ¢ < 7, (j < 4 is analogous),

(—i—1) ;(,..,_1) —1 sin 7 sin (b - ])a

Pli(u, s) = s\!
sin « sin ba

Now » " sin 4a sin (b — 7)o (sin a sin b &) " is a rational function of u with b — 1
distinct poles at u, = cos pw/bp = 1, --- , b — 1. Partial fraction expansion and
comparison of coefficients yield

T:J(t) — {21&)\‘}(7&4':—1) Hnt+i—p) —1t7l —(X+p)t}

b—1

X Z (2/b) sin (zpm/b) sin [(b — j)pm/b][cos (om/b)]".

We note that 1r.,(t) is precisely [t(A + u)]"¢ **?/n! times the analogous ab-
sorption probability for symmetric discrete time random walks. (See, for ex-
ample, Equation (8.12) of [1]). This relationship between the continuous and
discrete random walk could be used to derive =;;(t) from the discrete result.
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