NOTES

A LOCAL LIMIT THEOREM!

By L. A. SuEPP

University of California, Berkeley and Bell Telephone Laboratories

0. Introduction. In this note we shall obtain asymptotic estimates for
¢, = P{a £ 8, = b}, where @ and b are fixed,a < b,and S, = X; + --- + X,
is a sum of independent random variables with a common distribution and finite
variance. It is shown that for X;, nonlattice, with mean zero and variance ¢°,
¢~ (b — a) (21rn02)_%. This will appear as an application of the central limit
theorem of Cramér and Esseen. On the other hand, in the special lattice case
(integer-valued X;), we have ¢, = »fa, b](2rne®) ™t + o(n™?), where sa, b]
is the number of integers in [a, b].

The theorems appear unified in the following formulation. If F, is the measure
induced on the real line by S, , then (2wne”)*F, converges in the sense of dis-
tributions to Lebesgue measure \ in the nonlattice case, and to the measure »
in the special lattice case. Each of these measures may be viewed as a Fourier
transform of Dirac’s distribution. The remaining general lattice case will be
treated similarly.

These results are simple but do not appear to have been published previously.
They are related to some known results as follows: Under certain additional
assumptions on distributions in the domain of attraction of a nonnormal stable
law (¢ = ), Gnedenko ([2], p. 236; [3]) has obtained strong local theorems.
Our results complement those of Gnedenko in the lattice case ([2], p. 233).

1. Statement of results. If with probability one, X; has only the values
a+ kB, k=0, £1, -+, with « and B fixed, then X, is said to have a lattice
distribution. We suppose EX; = 0, EX: = ¢ < .

TaeoreM 1. If X, does not have a lattice distribution, then for all continuous
functions, g, with compact support

(L1) [ s atan [ o) ay,
where H, = (27na")'F,, .
TueoreM 2. If X, does not have a lattice distribution, then
(1.2) Pla £ 8, £ b} ~ (b — a)(2mns") %
In the lattice case, assuming first that 8 is chosen maximally, we may set our
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420 L. A. SHEPP

units so that 8 = 1. We shall prove the following theorem, otherwise obtainable
as a corollary of results of Gnedenko ([2], p. 233). Here {z} denotes the fractional
part of z and » is the measure assigning unit mass to each integer.

TrEOREM 3. If X, has a lattice distribution, then

(1.3)  (2mne®)'Pla = 8, = b} = va — {na}, b — {na}] + o(1).

If a is rational, we may take a = 0, and then for all continuous functions, g, with
compact support,

(14) [ s tay) - [ owiwiay).

If a s irrational, we have convergence in the Césaro sense,

(15) [ s Hian - [o@y @, (¢, D).

Here, (1.5) also holds if g is the indicator of an interval.

2. Nonlattice case with finite third moment. If X; does not have a lattice
distribution and E|X;]’ < «, then an application of a deep theorem (stated
below) of Cramér and Esseen ([2], p. 210) proves Theorem 1 for smooth func-
tions, g. This theorem has been previously applied to similar situations by Kal-
lianpur and Robbins [7] and by Bahadur and Rao [1].

TaeoreEM (Cramér-Esseen). If X; does not have a lattice distribution and has

finite third moment, then uniformly in x,
(21) Fu(zon)) = &) + a(1 — 2°)(72mne’) ™ exp {—2Y/2}) + o(n™H),

where a; = EX] .
If be L is absolutely continuous and vanishes at infinity, we obtain by in-

tegration by parts, applying (2.1),
22) [ b@)Haldy) = —(@m?) [ F.)V @) dy = [ 5(0) dy + o(1).
The absolute continuity assumption is easily removed, but to prove (1.1) for
general X, , we must adopt a different attack.

We shall assume first that g € C* (i.e., has two continuous derivatives). The

transform, y(z) = g_(y)e_"”z dy = O(1 + z°) ™" and so v ¢ L. The characteristic
function, ¢(z) = E(e™*), satisfies Parseval’s identity,

(23) [ s Hatay) = ne/2m)! [ 1(2)6(2) .
For any K > 0, by normal cohvergence (2], p. 181),

(24) (o'/2)! [ (@) de = 2(0) = [ o) ay,



A LOCAL LIMIT THEOREM 421

using the fact that sup {le(2)|":0 < § = |2|] £ K} is exponentially small ([2],
p. 59),asn — .
The proof of Theorem 1 is completed by showing that

(2.5) nt f| o v(2)¢"(2) dz = o(1).

We remark that (2.5) holds if X, satisfies condition C of Cramér,
lim sup |e(2)| < 1,as 2z — .

3. Nonlattice case with infinite third moment. We now assume that X, is
nonlattice and E|X,/> = «. We shall prove (1.1) by a truncation method.
Assume first that ¢ has four continuous derivatives. By integrations by parts,
lv(2)| < ¢B(z), where 8(z) = (1 + 27 and ¢ > 0. We put ¢(2) = |e(2)|~

LeMMma. If ¥ ¢s a nonnegative, nonlattice characteristic function, then for every
K > 0, we have

(3.1) n? fm . B(2)¢"(2) dz2 = o(1).

If X is a random variable with characteristic function ¢, let
Y=X if | X|<T,
(32)
=0 else

where 7T is chosen so large that Y is nonlattice. Let y; denote the characteristic
function of Y. For all z,

(3.3) ¥(2) = (2).

If G. denotes the distribution function corresponding to Y1, then by (2.2)
with b(z) = (2w)"'fe™B(z) dz, we obtain

(34) 2en’ [ b(@)Galde} — (t/2m) [ b(z) d,
where ¢; = EY?, since E|Y|* < «.By (2.4), we obtain
(3.5) n%f B(2)yi(2) dz — (a3/2m) 7 f b(z) dz.
l2|£K
Subtracting (3.5) from (3.4) and using (2.3), we obtain
(36) W[ B d—o.
Il 2K

The lemma follows from (3.6) and (3.3). Since v is bounded by 3, (2.5) follows

from the lemma, and so (1.1) holds whenever EX; < «, and g ¢ C*. To remove

the latter restriction, we employ the usual technique, proving somewhat more
than necessary for Theorem 1. Let fm , hm, m = 1,2, -- -, be functions of ct
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with compact support, for which,

(37) InSgShe and [ (b= f) 0.

If ¢ satisfies the hypothesis of Theorem 1, or if g is the indicator of an interval,
then such sequences f., h. exist. Hence, form = 1,2, --- ,n =1,2,---,
we have

38) [ fHidy) s [ g Hdy) S [ b Haldy).

Letting n — o, then m — «, we learn that [ ¢(y)H.{dy} — [g(y) dy. This
proves Theorems 1 and 2.

4. Lattice case. We consider first the simple lattice case, when @ may be
chosen so that « = 0. We assume that 8 is maximal, and then adjust units so
that 8 = 1. With v(2) = >_g(n)e ™™, where g has compact support, we obtain

(4.1) [ swtatay) = a/em)! [ (e (e) e

Arguing as in (2.4) gives immediately, since we are now dealing with a compact
interval,

(42) [ 9@ Hatdy) > (0) = Zgn) = [ g v

This proves (1.4). In the general lattice case, « is irrational, and (1.3) re-
ceives a direct proof based on the same argument. .
If g £ C* has compact support, we have, with v(2) = fe “*g(z) dx.

(43) [ o Hutdy) = (na/2m)! [ 4@)é* (e (2))" de.
Since ¢ ““p(z) is periodic with period 27 (8 = 1), we may write
(44) [ o Btay) = (s2m) [ 25 2)e") de
where v (z) = 2 v(z + 2nk)e*™ ™. Applying the normal convergence and the
equicontinuity of the sequence yi ,n = 1,2, -« -,
(45) [ s Htdy) = 720) + o(1).
Using the Poisson summation formula ([8], Section 2.85), we have
(4.6) 1e(0) = Dy(27k)e ™" = 3 g(k + na).
By Weyl’s Lemma ([6], pp. 115-117), for any irrational a,
1 n
(47) L3220 = [ ow) av.
N k=1
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Thus, for g ¢ C*, with compact support,

(4.8) fg(y)Hn{dy} —>fg(y) dy, (C,1).

By imitating the steps in (3.7) and (3.8), we extend the class of functions, g,
for which (4.8) holds. This proves (1.5) and Theorem 3.
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