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1. Introduction and summary. In testing hypotheses about an exponential
distribution with probability density function

p(x; 6, A) = (1/6)e” =" forz = A,
=0, forz < A,

where 8 > 0, the following questions arise:

(1) Are certain linear forms in the order statistics of arandom sample of size n
from this distribution distributed as chi-square random variables?

(2) Are certain linear forms in the order statistics stochastically independent?
The first two theorems in Section 2 answer these questions. As a consequence of
these two theorems, several results follow which are similar to those pertaining
to quadratic forms in normally distributed variables.

The characterization theorem in Section 3 was suggested by a result for nor-
mally distributed variables. Lukacs [4] proved that if a random sample is taken
from a continuous type distribution with finite variance, then the independence
of the sample mean and the sample variance characterizes the normal distribu-
tion. That is, the independence of the estimates of the two parameters of the
normal distribution characterizes that distribution. Nowif X; < Xo < --- < X,
are the order statistics of a random sample from the exponential distribution
p(z; 6, A), then X; and (1/n) Dty (X: — Xi) are estimates of the parameters
A and 0, respectively. In Section 3, we prove that the independence of these two
statistics characterizes this exponential distribution.

2. Chi-square and independence theorems. Let X; < X, < --- < X, denote
the order statistics of a random sample of size n from p(z; 6, 4). Let
U = (ur,us, -+, uy) be a vector in n-dimensional Euclidean space, E", and
let X' = (X1, Xo, -+, X,) be the vector composed of the order statistics.
Epstein and Sobel [2] proved that (2/6)U’X has a chi-square distribution for
particular vectors, U’. Theorem 1 gives a necessary and sufficient condition on
U’ so that (2/6)U’'X has a (translated) chi-square distribution. A translated
chi-square random variable Y is equal to Z + b where Z has a chi-square distribu-
tion and b is a real number. The number b is called the translation parameter.
The characteristic function of Y is given by

Elexp(itY)] = exp(bit)/(1 — 2it)",
where 2r is equal to the number of degrees of freedom of Z.
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TuroreM 1. Let X' = (X1, X2, - , X,) denote the order statistics of a random
sample of size n from p(x; 6, A). Let U' = (wy, us, -+ , u,) be a vector in E"
andlet oy = D ppui, kb = 1,2, -+, n. Then (2/6)U'X is distributed as a (trans-
lated) chi-square variable if and only if o = 0oroax =n —k + 1fork =
1,2, .-+ | n; the number of degrees of freedom s equal to twice the number of positive
ax’s and the translation parameter is equal to 20,4 /6.

Proor. The characteristic function of (2/6)U’X is given by-

Elexp(20tU'X/0)] = n!exp[QaIA1,')1/0]/17‘11 (n —k 4+ 1 — 2itoy).
=

A proof of this can be based on a lemma proved by Rényi [5] or by evaluating
the iterated integral

f; /w 1 (n!/6") exp [{—g (1 — 2¢tuz) 1 -FnA}/e] da, -+ dry .

Tp—

To prove the necessity, assume that (2/6)U’X has a translated chi-square
distribution with 2p depress of freedom and translation parameter b. Then
Elexp(2itU’'X/0)] = exp[bit]/(1 — 2it)”. Thus

explbit]/(1 — 26t)* = exp[2a1Ait/0]/f11[1 — 2itay/(n — k + 1)].

So, b = 2a14/0, and by the unique factorization theorem, either 1 — 2t = 1 —
2itox/(n — k + 1), which implies that ¢4 = n — &k + 1,0r1 =1 — 2t/
(n — k 4+ 1), which implies that a; = 0.

To prove the sufficiency, we have, by hypothesis,

n—k+1—21,tak=n—k+l, ifak=0,
=n—-—k+1)(1 —2i), far=n—k + 1.

Thus Elexp(2itU'X/0)] = exp[2a4it/6]/(1 — 2it)?, where p is equal to the
number of positive a;’s. This completes the proof.

We note that if &y = 0, the translation parameter is equal to zero, and hence
(2/6)U'X has a chi-square distribution. Also, sometimes in applications, A = 0,
in which case the translation parameter is always equal to zero.

It follows easily from Theorem 1 that if (2/6)U’X has a (translated) chi-
square distribution, then (i) wz = 0 or w5y = —(n — k) if and only if o =
and (ii) u = lorw, = n — k + 1if and only if ax = n — k + 1. Thus the
number of degrees of freedom is equal to twice the number of positive u’s.

Let U' and V' be vectors in E" and let X' = (X;, Xa, - -+, X.) be the vector
composed of the order statistics of a random sample of size n from ’i)(x; 6, A).
Epstein and Sobel [2] and Carlson [1] have proved that U'X and V'X are inde-
pendent for particular vectors, U’ and V. The following theorem gives a neces-
sary and sufficient condition for the independence of U'X and V'X.

TueoreM 2. Let X' = (X1, Xa, -+, X.,) denote the order statistics of a
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random sample of size n from p(x; 6, A). Let U = (uy, us, -+, u,) and V' =
(v, V2, -+, v,) be vectors in E™. Let ax = D impus and let B, = D rup v: for
k=1,2,---,n. Then (2/0)U'X and (2/6)V'X are independent if and only of
ol = 0,’0 = 1,2, cer, N

Proor. We prove first the necessity. The joint characteristic function of
(2/6)U’X and (2/6)V'X is given by

é(ti, ) = Elexp(2i,U'X/0 + 2it,V'X/0)]
= nlexp[24i(hay + tzz.‘h)/f)]/kI_I1 (n — k 4+ 1 — 2ty — 2its8:).

Since (2/6)U’X and (2/6)V'X are independent, ¢(t1, t:) = (&, 0)¢(0, &).
That is,

n! exp [247(t a1 + t2 81)/6]
II(n — &+ 1 — 2iti s — 2ita i)

k=1

n! exp (2474 a1/0) n! exp (241t 8:/6)
IIn—-—k+1 —2it1ak)kIII(n—k+l — 2itsB)

k=1

Equivalently,

T — 2t + 66)/(n — k + 1)]

k=1

=1t ~ 2iten/tn — & + DI 11 — 2088/ (n —  + 1)

k=1

for all real values of ¢, and ¢, . Then if we take t; = t, = ¢, we have

11 — 2it(as + B)/(n — k + 1)]

k=1

=110 - 2iten +80)/(n — k + 1) — 4’/ (n — k + 1)),
Each factor on the left is equal to some factor on the right; this implies that
afy =0fork =1,2,---,n.

In proving the sufficiency, since ax8: = 0, k = 1, 2, - -+, n, it follows that
o(t, 1) = ¢(t1,0)9(0, t), and thus (2/6) U'X and (2/6) V'X are independent,
completing the proof.

The following examples, which were considered by Epstein and Sobel [2], will
illustrate the use of these theorems.

(i) In life testing, quite often only the first r items are observed. Then the
statistic (1/r)U'X, where UX = > i (X: — X1) + (n — r)(X, — Xi1),isan
estimate of the spread parameter 6. For this statistic
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ar = 0, fork = 1 and forr < k = n,
=n—k+1, forl <k = 7.

Thus (2/6) U'X has a chi-square distribution with 2r — 2 degrees of freedom.

(ii) The statistic X; is an estimate of the location parameter A. It follows
from Theorem 1 that (2/0)nX; has a translated chi-square distribution with 2
degrees of freedom and translation parameter 2nA /6.

The independence of U'X and X, follows immediately from Theorem 2.

Epstein and Sobel [2] also pointed out that the statistics X;, Xo — X1, -+,
X, — X, are mutually independent. It is interesting to note that Theorem 2
implies that this is essentially the only set of n linear forms in the order statistics
that are mutually independent.

It also follows from Theorem 2 that if m linear forms in the order statistics
are pairwise independent, then they are mutually indépendent.

The following two theorems are a consequence of Theorems 1 and 2. They
are analogous to theorems concerning quadratic forms in independent normally
distributed variables.

TuroreM 3. Let X' = (X1, Xz, -+, Xa) denote the order statistics of a ran-
dom sample of size n from p(z; 0, A). Let U = ™ Vi, where Vi =
(vij, V25, -, Unj) ts a vector in E”. For eachj = 1,2, --- ,m, let Bx; = Sorkvij,
k=1,2,---,n Let (2/0)V;X,j = 1,2, - - - , m, be mutually independent. Then
(2/0)U’'X has a (translated) chi-square distribution if and only if each (2/60)V;X,

j=1,2,--+,m, has a (translated) chi-square distribution.
Proor. The sufficiency of this condition is obvious. To prove the necessity,
we note that az = Y 7 Bkj, where o = X rgui, k = 1,2, -+, n. Since

(2/6)U’X has a (translated) chi-square distribution, either o = n — &k + 1 or
a; = 0 by Theorem 1. Since the (2/8) V;X are mutually independent, Theorem 2
implies that, for each k, there exists at most one 7 such that 8:; # 0. Thus if
> B = n — k 4+ 1, there exists a j = j(k) such that Bijey = n — k + 1
and B; = 0 forj = j(k). If D71 B:; = O, then B; = Oforj = 1,2, -+, m.
So foreach j = 1, 2,---, m, either B; = n — k + 1 or B; = Ofork =1,
2, -+, n. Thus, by Theorem 1, each (2/6)V;X has a (translated) chi-square
distribution.

In the statement and proof of Theorem 4, we use the notation of Theorem 3.

THEOREM 4. Let U' = D7y V;. Let each (2/0)V;X,j = 1,2, -+, m, have
a (translated) chi-square distribution. Then (2/0)U’'X has a (translated) chi-
square distribution if and only if (2/0)ViX,j = 1,2, --- , m, are mutually inde-
pendent.

Proor. The sufficiency of this condition is obvious. To prove the necessity,
we again note that a, = D 7y Bi; where o = Dz ti, k = 1,2, --+ , n. Since
(2/0)U'X has a (translated) chi-square distribution, Theorem 1 implies that
ar=n—k+1lora = O,k = 1,2, ,n.SinceBk,- =n—Fk+ lorﬁkj =0
forj=1,2, -+ ,m, 2B =n — k -+ 1implies that there exists one j = j(k)
such that Bi,40 = n — k + 1 and B; = O for j = j(k). D7 Bi; = O implies
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that B; = Oforj = 1,2, ---, m. The (2/0)V;X,j = 1,2, ---, m, are thus
pairwise independent and hence are mutually independent.

The following theorem is somewhat analogous to Cochran’s Theorem for
quadratic forms in normally distributed variables. We again use the notation of
Theorem 3.

TueorReM 5. Let U' = D7, V; . Let r equal the number of positive ay’s and let
r; equal the number of positive Bri’s,j = 1,2, -+ -, m. Then (2/0) U'X has a (trans-
lated) chi-square distribution and r = D j-1r; if and only if each (2/6)V;X,
j =1,2 -+, m, has a (translated) chi-square distribution and (2/ VX,
j=1,2, ---,m, are mutually independent.

Proor. The sufficiency of the condition is clear. We now prove the necessity.
Since (2/6) U'X has a (translated) chi-square distribution, either ax = n — k + 1
or az = 0. Since r = D7y r;, for each k such that o, = n — k + 1, there is
exactly one j = j(k) such that Br;w # 0. Thus >y B = n — k + 1 implies
that Bijay = n — k + Land B; = 0,7 # (k). If D71 B; = O, then Bi; = 0,
j=1,2 -+, m. Thus each of (2/60)ViX,j = 1,2, -+, m, has a (translated)
chi-square distribution and they are mutually independent by Theorem 4.

The following theorem is similar to a decomposition theorem of Hogg and
Craig [3] which deals with quadratic forms in normally distributed variables.
In the statement and proof of Theorem 6, we use the notation of Theorem 5.
The following notation is also used. If ¥ has a translated chi-square distribution
with r degrees of freedom and translation parameter b, we say that ¥ is x°(r)
with translation parameter b.

TurEoREM 6. Let U’ ", Vi, where (2/0)UX s x°(2r),0 < r < n, with
translation parameter 2a1A/ 0 I f(2/0)V;X is x"(2r;) with translation pammetm
26,;,4/0,7 = 1, 2 —l,and if Bm 2 0,k = 1,2, --- ,n, then (2/0)VaX
is ¥ (2lr — 24 r,]) wzth translatwn pammeter 2(¢x1 — Z, B1;)A/0. More-
over, the m linear forms V,X m=1,2, ---,m, are mutually independent.

Proor. Since U’ = D 7 Vi, Bim = ax — 271 Bes . Thus

m—1
ﬁkm=0, lf ak=0 and Z ﬂkj=0,
i=1
m—1
=0, if ax=n—k+1 and > By=n—Fk+1,
=1
m—1

=n—k+1 f ax=n—-k+1 and Zﬁkj:o-
=1

These are the only possible values because Bk,,, =20fork=1,2,---,m, and
(2/0)U'X and (2/0)V;X,j = 1,2, --- — 1, have (translated) chi-square
distributions. Thus Bt =n — k + 1 1f and onlyifay =n—k+1and B; = 0,
j=1,2,---,m— 1. Hence the number of positive 8i’s is equal to r — 2
and Bim = a1 — D71 Bi; ; this implies, by Theorem 5, the conclusion of the
theorem.

We note that if U'X = Y i X, and m = 2, then the hypothesis 812 = 0,
k=12 -+, n, can be removed.
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3. A characterization theorem. In the examples of the previous section, we
saw that, when sampling from an exponential distribution, the statistics X; and
(1/n) X7 (X: — X;) are independent. In the next theorem we will prove that
the independence of these statistics characterizes the exponential distribution.

THEOREM 7. Let F be an absolutely continuous distribution function of the random
variable X with F(A) = 0and F(z) > Oforx > A. Let X; < X, < --- < X,
denote the order statistics of a random sample of size n from this distribution. Then
the probability density function (hereafter, p.df.) of X is given by p(x; 0, A) if and
only if Xy and D 7 (X: — X1) are independent.

Proor. The necessity of this condition follows immediately from Theorem 2.

We prove the sufficiency of this condition first for the case n = 2. Let
Y=X-A.1{Y,=X,—Aand Y, = X, — 4, then Z; = Y,and Z, =
Y, — Y are independent. The joint p.d.f. of Z; and Z; is given by k(z, 22) =
2f(21)f(z1 + 22),21 = 0, 2, = 0, where f is the p.d.f.'of Y. Because Z; and Z, are
independent, h(2; , 22) = hi(21)ha(22), where h; is the p.d.f. of Z;,7 = 1, 2. Thus
it follows that f(z1 + 22) = fi(21)f2(22), where f; is a function of z; alone, 7 = 1, 2.
This relation along with the inequalities 2, = 0 and z; = 0 imply that f must
satisfy (almost everywhere) the functional equation

(1) f(0)f(z + y) = f(2)f(y), 20, y

where f(0) = 0.

Since Equation (1) implies that f(y) > 0 for y > 0 (almost everywhere), we
have, by taking logarithms, logf(0) + logf(z + y) = logf(z) + logf(y).
Letting g(y) = log f(y) — log f(0), this bceomes

(2) g(z +y) = g(x) + g9(y), z20, y=0.

Sierpifiski [6] proved that if a measurable function, g, satisfies the functional
Equation (2), then ¢g(y) = ¢y, y = 0, where ¢ is a constant. That is,
log f(y) — log f(0) = ¢y, y = 0. Thus, f(y) = f(0)e”, y = 0. Since f is a prob-
ability density function, ¢ = —f(0). Letting f(0) = 1/0, we see that the p.d.f.
of Y is given by p(y; 6, 0) and hence the p.d.f. of X is given by p(zx; 6, 4).

In the proof for n > 2, we first make the observation that >, (X; — X;) =
X, + -+ + X, — (n — 1)X, does not depend on the ordering of X, , --- , X, .
Thus, if we take X; < X,, X3, -+, X,, it is still true that X; and
> %4 (X: — X,) are independent. Let f denote the p.d.f. of X. The conditional
distribution of X», X3, -+, X, , given X; = 11, is

g(@2, oo, T | 31) = f(&2) -+ flza)/I1 — F(@)]™, 21 <22, ,%n.
The characteristic function of the conditional distribution of ZLI (Xs — X1),
given X; = x1, is

{ow [t 2 04 - X |1
~{ [ ettt — a0\ a1 = P}

1

1%

0,
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This follows from the fact that each X;,¢ = 2,3, --- , n, given X; = z,, has
-the same distribution and the X;,7 = 2,3, --- , n, are conditionally mutually
independent. Because of the independence of X; and ) 7, (X; — X;), this
characteristic function must be free of z; . Thus

[ e litCas — 215z dan/11 — Fla))

z1
must be free of z;. But this is the characteristic function of the conditional
distribution of W, — W, , given W, = z, , where W; < W, are the order statistics
of a random sample -of size 2 from f(z). Thus W, and W, — W; are independent
because this characteristic function is free of W, = ;. Thus, by the case for
n = 2, the p.d.f. of X is given by p(z; 0, A).
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