MULTIVARIATE BETA DISTRIBUTIONS AND INDEPENDENCE
PROPERTIES OF THE WISHART DISTRIBUTION!.

By INGRaM OLKIN AND HERMAN RUBIN

Stanford University and Michigan State University

1. Summary and introduction. If X and Y are independent random variables
having chi-square distributions with n and m degrees of freedom, respectively,
then except for constants, X/Y and X/(X 4 Y) are distributed as F and Beta
variables. In the multivariate case, the Wishart distribution plays the role of
the chi-square distribution. There is, however, no single natural generalization
of a ratio in the multivariate case. In this paper several generalizations which
lead to multivariate analogs of the Beta or F distribution are given. Some of
these distributions arise naturally from a consideration of the sufficient statistic
or maximal invariant in various multivariate problems, e.g., (i) testing that &
normal populations are identical [1], p. 251, (ii) multivariate analysis of variance
tests [9], (iii) multivariate slippage problems [4], p. 321. Although several of the
results may be known as folklore, they have not been explicitly stated. Other of
the distributions obtained are new.

Intimately related to some of the distributional problems is the independence
of certain statistics, and results in this direction are also given.

2. Notation and comments. If ¥V and W are symmetric matrices, V > W
means that V — W is positive definite. I, denotes the identity of order p; the
subscript is omitted when the dimensionality is clear from the context. We
write etr A to mean exp tr A. X ~ Y means that X and Y have the same dis-
tribution. V~ W(Z, p, n) means that V is a p X p symmetric matrix whose
p(p + 1)/2 elements are random variables having a Wishart distribution
with (non-degenerate) covariance matrix = = A~ and n degrees of freedom
(n = p assumed throughout), i.e., with density function.

p(V) = c(n, p)|AI"*|V|"7 etr (—3AV), vV >0,

2.1 P
@D 1e(n, p) = 2T I TH(n — 4 + 1))

If A >0, A:m X m, then A* may be defined as A* = AD,A’, where A is an
orthogonal matrix, D, = diag(ay, -, @), and o}, -+ -, ab are the characteristic
roots of A = AD2A’. We may also write A = BB’ and define A* = B. With the
first definition, A* is symmetric, but this need not be the case with the second
definition. We adopt the convention that in an expression such as A*VA* the
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262 INGRAM OLKIN AND HERMAN RUBIN

postmultiplier is (4!)’. In cases where the non-symmetric square root is used,
we will lelet the lower triangular matrix 7', with ¢; > 0, be defined uniquely by
A =TT.

A curious phenomenon which occurs is that certain distributions are different
depending upon which definition of A! is adopted. Indeed, some independence
properties which intuitively seem reasonable do not hold if any square root is
used.

We also need a symbolism for certain submatrices. If 4: p X p, we write
A = (ay):d,j =1, -, aand Ay = (a5):5,j=p—a+1, -, p.

If Y = f(X) is a matrix transformation, the absolute value of the Jacobian
3(z:;)/9(y:;) is denoted by J(X — Y). The Jacobians required are obtained in
[3] and [7]. In addition we need the following results.

LEMMA 2.1. Let T be lower triangular and A symmetrw The Jacobian of the
transformation Y = TAT from Y to T isJ(Y — T) = 2P[[2(¢5 " |A1)).

Proor. Write A = LL', where L is lower triangular, and let M = TL. Then
JY > T) = J(Y - MJM — T) = (2°II? m% (112 127
2"H"(t”"’+‘ L) ([3], [7]). The result follows by noting that |A‘”|
Hl"‘l lu

LemMa 2.2. Let T be upper triangular and A symmetric. The Jacobian of the
transformation Y = TAT from Y to T isJ(Y — T) = 2° [P (i |Awl).

The proof parallels that of Lemma 2.1.

3. Multivariate beta distributions. The first two theorems indicate the distinc-
tions that arise by using different square roots. In the simplest case, let Sy, S be
independently distributed, S; ~ W (I, p, n;),j = 0, 1, and (So) S =TT,
where ,TllS lower triangular. The distributions of V' = Sy 16,87% and of U =
T7'8:T

(31) p(V) =¢ |V|(ﬂ1—P-'1)/2 II + VI-("0+n1)/2, V> 0’
p .

(32) p(U) =c IUl(nl—p—l)/2 II + Ul—(nu+"1+1’+l)/2H I(I + U)[]]I, U > 0.
1

The result (3.2) holds for any Z, whereas (3.1) does not hold for general =.
The latter distribution is unknown, and in Section 5 we show wherein the diffi-
culty lies. Both distributions are of interest in number theory, Bellman [2].
Related distributions have been considered by Olkin [8].

These distributions are now obtained for a more general case.

THEOREM 3.1. Let Sy, S1, « - -, Sk be independently distributed, S; ~ W (I, p, n;),

= (8})%. The joint distribution of

(3.3) Vi = 888t j=1,-k
18
. k k —n/2
(34) p(Vy, -+, Vi) = ¢ [T |Vi| ™2 P2 |I + }1: Vi, V;> o0,
1

2 The symbol || denotes end of proof.
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wheren = Y n;, and

k » k
IT ¢(n;, p) I II ri3(ne — i + 1)]
(3-5) _ 0 - W—}kp(p—l) =1 a=0
c(n, p) I3(n — ¢+ 1)
Proo¥. In the joint distribution of S, - - -, S obtained from (2.1) withZ = I,
make the transformation (3.3), the Jacobian being J(S;, -+, Se — Vi, -+, Vi)

= [So|*"*"”* and obtain the joint distribution of Sy, V;, ---, Vi . Integrating
over Sy > 0 yields (3.4).|
TaEoREM 3.2. Let So, S1, - - -, Sk be tndependently distributed, S; ~ W (Z, p, n;).
(i) The joint distribution of U; = T'S;T" ", j = 1, - -+, k, where T is a lower
triangular matriz defined by Sy = TT', is

k k -
IlI IUjI(n,‘—p—l)IZ I _|_. zl: Uj '
P k [C]]
(I + ; U,~>

11
a=1

(ii) The joint distribution of U; = T 'S;T" ", j = 1, ---, k, where T is an

upper triangular matrix defined by So = T T', 8

k
III ‘Uj‘(nj—p—l)ﬂ
D k
(1 + le U,)

In each case,n = Y ¢n;,and ¢ = 116 c(n;, p)/c(n, p).

Proor. The proofs for (i) and (ii) parallel one another, and we present the
details for (i). In the joint distribution of So, - - -, S; obtained from (2.1), make
the transformation So = TT', S, = TU,T',j = 1, ---, k. The Jacobian is
J(So, 81, -+, 8= T, Uy, --+, Up) = 27 |T*"P 7 ¢27**". This yields

k P .
p(T, Uy, -+, Up) = ¢ | IT |U; 0 I 27
1 1

(n—p—1)/2

(36) p(Ul,”',Uk):c 5 Uj>0.

—(n—p—1)/2

k
I+Zl:Uj

(37) p(Uly"')Uk) = C ) UJ>0

[«

k
(3.8) etr — AT <I + ; Uj> T,

v
U;>0, 0<ty< o, —owo<lti(i>j)< o, c¢=2"]]c(n;,p).
1

Transform from T to ¥ by ¥ = T(I 4+ 2U;)T’, using the Jacobian as given by
Lemma 2.1. (Lemma 2.2 is used for (ii).) Thus we obtain the joint distribution
of (Y, Uy, -+, Us). Integration over Y > 0 yields the result. ||
In the next two theorems it does not matter which square root is used.
THEOREM 3.3. Let So, Sy, -« -, Sk be independenily distributed, S; ~ W(Z, p, n;).
The joint distribution of

k - k -
(39) W; = (;St) S; (;Sz> ) J=1 -,k
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for any square root, is

k k
p(Wl, ) Wk) =¢C (I;I IW.‘fli(ni-p—l)> l I — Z W]'

WJ'>07I'"ZW7'>O,

$(ng—p—1)

b

(3.10)

where ¢ = IIIOc c(nj, p)/e(n, p),n = Zlé n;.

Proor.Let Z = D 08;, W;=Z2*S;Z2%,j=1,---,k;thend (S, - -+, Sx = Z,
Wiy, -, W) = |Z|"(”+D/2, and we obtain the joint distribution of Z, W, , - - -, Wy.
Integration over Z > 0 completes the proof. ||

THEOREM 3.4. Let Vy, -+ -, Vi be defined by V; = 83°8;80°, as in (3.3) and
define

-1

k —% k
(3.11) Z:'=(I+ZV:'> V,-(I+ZV,-> , j=1-,k
1 1

The joint distribution of Z1, - - -, Zy is gien by (3.10).
Proor. This proof requires more intricate transformations because of the
successive square roots, i.e.,

k -} k -3
Z; = (so—’ ; S; S;’) Sots; 8ot (s;* 38 S;’) .
0

The result (3.11) follows by successively making the transformations Q =
I+ 20V, Z2,=QVQ 7 j=1,-k—1from (Vi, -+, Vi) to (Zy, -,
Zi-1, Q), and then from Q to Zy by Z, = Q'ViQ =1 — Q' — 257 Z;.
Alternatively, we note that for W; defined by (3.9), Z; = AW,A’, where A =
(I 4+ 25 V)78eH (226 8,) 7 Since 44" = I, p(Zy, -+, Zu | A) = p(Wy, -,
Wi | A) for every such A, from which it follows that p(Z,, - - -, Z;) is given by
(3.10). || '

Closely related to the distribution of Theorem 3.2 is the following.

TaEOREM 3.5. Let S, , S, be independently distributed, S; ~ W (Z, p, n;).

(i) The distribution of ¥ = T'(8y 4+ S2)7'T, where Sy = TT', T is lower
triangular, is

c(m, p)e(ng, p) |Y|*"2 I — Y|i(n1—p—1)
c(m + nz, p) v
o 117l

p(Y) = , 0<Y<I

(3.12)

(i) The distribution of ¥ = T'(Si + S2)7'T, where Sy = TT', T is upper
triangular, s
c(n1, p)e(na, p) |V |I — YD
c(m + nz, p) fI v

1

p(Y) = , 0<Y<L

(3.13)

Proor.
(1) From the joint distribution of S;, S., make the transformation W =
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Si+ S, TT = S, thenJ (S, S; —» W, T) = 2°][? ¢~ Thus
? .
p(W, T) = c|W — TT|™ " ] t72" etr(—1=7'W).
1

Now transform from T to Y by ¥ = T'W'T. The Jacobian is given by Lemma
2.2, namely, J(T — Y) = 27 [J{&7 |(W )™}, so that

p .
p(Y, W) = c|[W[F™ |0 — YPO I (627 (W)l ™) etr(—327'W).
1

Also JI? &5 = |Y(al/|(W )| Integration over W > 0 yields the result.

(ii) The proof parallels the above, using Lemma 2.1 instead of 2.2, and
IIF &7 = II2 1Y)/ ow )Y |

REMARK. Alternative proofs can easily be suggested. One which is involved in
other problems is to transform from 4 to A™. The JacobianJ (4 — A™") = |4|""
and follows from the well-known equation dA™ = — A7 (d4)A™".

4. Central Studentized Wishart distributions. Let X:k X p, k¥ < p, and
V:p X pbe independent random matrices, where the rows of X are independently
and identically distributed as 9(0, £), and V ~ W(Z, p, n).

THEOREM 4.1. The distribution of G = XV X' is
(41) (@) = |G VAL 4+ G, ¢ >0,

where
k
c=a "I + k — i+ 1))/
1

{TE(p — ¢+ DITE(n + &k — p — 7+ D]}
Proor. Because of the invariance of G under the transformation X — X4,
V — A'VA, we can assume = = [. Using any square root, let ¥ = XV be a
transformation from X to Y, with J(X — Y) = |V|*2. This yields the joint
distribution of Y and V, and after integration over V > 0 we obtain

p(Y) = (20)™c(n, p)/c(n + k, p)|[I + Y'Y[TP7
— oo ]y < oo,

Noting that |I, + Y'Y| = |I, + YY’|, we can apply Hsu’s lemma [1] p. 319,
to obtain the distribution of @ = YY'. ||

TuEOREM 4.2. Let V = TT and H = XT' .

(1) If T is lower triangular, then

(4.2)

p ..
(4.3) p(H) = ¢ |I, + HH[""*72 T|(I, + H'H)"[™
1
(ii) If T is upper triangular, then

Y4
(4.4) p(H) = c|I, + HH™"* > P (I, + H'H)|™,
1
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where
yd
c= 2r) Tl T3(n + k — 5 + 1)/TE(n — i + 1)].
1

Proor. Transforming from (X, V) to (X, T') and then to (H, T'), we obtain
an expression similar to (3.8). Now let M = T(I + H'H)T'. Using Lemmas
2.1 and 2.2, we obtain the joint distribution of (H, M) and integrating over
M > 0 yields the result. ||

6. Square root transformation. If V:p X p is positive definite, we may wish
to transform from V to V! by ¥V = (V*)%. The Jacobian is now evaluated and
we see that this introduces the symmetric functions of the characteristic roots
of V.

TaEOREM 5.1. The Jacobian of the transformation V = 8%, S symmetric, is
J(V—->8) = Hiéj(ai + 0;), where 6., - - -, 8, are the characteristic roots of S.

Proor. Taking differentials, we obtain

(5.1) dv = 8(dS) + (dS)S.

Write S = I'DeI”, where T is orthogonal, Dy = diag(6:, - -, 6,), so that (5.1)
can be written as

(5.2) I'(dV)T = DoI"(dS)T + I'(dS)I'D,.
Let W = I'(dV)T, R = I'(dS)T, then W = DsR + RD,, and
J(V = 8) =J(dV — dS) = J(dV — W)J (W — R)J(R — dS).

An easy computation gives the result. ||

To make use of this transformation, ] [.:<;(8; + 6;) = g(8) should be expressed
as a function of S. This can be done for any p, but no general formula seems to
be available. If we denote by a; the kth elementary symmetric function of
61, -+, 0,, then g(8) is a function of the a;’s. But a; = tr,S, where tr,S is the
sum of all kth order principal minors of S. For p = 2, 3, 4, ¢(8) is equal to
Qasay , 2az(aas — as), 2'as(ara00; — a3 — aias), respectively. In particular, for
the bivariate case, the density of § = V*is

p(8) = [¢(n, 2)22/|E|%n](811822 — 85)" (su + sm)etr(—1i=7'S%), S > 0.

We also compute the Jacobian of a related transformation.

CoROLLARY 5.2. The Jacobian of the transformation V.= SAS, S and A sym-
metric, is J(V — 8) = H,-g(m + u;), where n1, -+ -, 1, are the characteristic
roots of AlSA

Proor. Write Q = A'WA! = (4'S4%)? = B®. Then J(V — 8) = J(V — Q)
T(Q— B)J(B—8) = (|47 ") [Ligi(n: + n) (14|77, |

6. An independence property of the Wishart distribution. Let Vy, ---, Vi

be independently distributed, V; ~ W (Z; p, n;). In this section we consider the
problem of finding NASC for the independence of Y 5 V; and g(Vy, ---, Vi),
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where g is a matrix function of matrix arguments, e.g., g(Vi, V) = ViiV,Vik
The genesis of the problem lies in a theorem of Laha [6] which treats the uni-
variate case of the Gamma distribution, and which is related to some of the
distributions obtained.
THEOREM 6.1. Let V; ~ W(Z, p,n;),5 = 1, - - -, k, be independently distributed.
() If Z = 23V, and g(Vy, ---, Vi) are independently distributed, then
g(Vy, -, Vi) ~g(AV, A", -, AVA"), for all non-singular p X p matrices A.

(ii) If for each B > 0, there is an M with MM’ = B and ¢(Vy, ---, Vi) ~
g(MV\M', -« MV.M'), then Z and g(V) are independent.
Proor.

(i) Suppose Z and g(V) are independently distributed, then, for A = =" and
writing E, for Eg,
(6.1) Eyetr i[TZ + Sg(V)] = Ej etr(¢TZ)E, etr [¢Sg(V)],
where T is symmetrie, 7’ and S are real. Since E, etr [¢Sg(V')] is independent of
T and since E, etr(¢+TZ) is analytic for ®( A — 2¢T') > 0, then E, etr ¢[TZ +
Sg(V)] is analytic for ®(A — 2T) > 0 and Equation (6.1) holds for all 7' in
this domain. By direct evaluation,
By etr [iTZ + iSg(V)] = [A["|A — 2T "Ersir etr [1Sg(V)],
Ej etr iTZ] = |A["|A — 2077,
and hence by (6.1),
(6.3) Ej etr [iSg(V)] = Epuir etr [6Sg(V)],
for all T with ®(A — 2(T) > 0. By using the transformation AV,;A" — V;,, we
find that
(6.4) By etr [iSg(AVA")] = E,-us—1 etr [48g(V)],

for all non-singular A. Now let T = ¢L, L real symmetric, be defined by A 4+ L
= A"'AA7", so that (6.3) and (6.4) are equal, which proves (i).
(ii) Suppose g(V) ~ g(MVM'), then using (6.4),

(6.5) Ey etr [iSg(V)] = Ej etr [iSg(MVM')] = Eu—1uu—1 etr [iSg(V)].

Now choose M sothat M "AM ™ = A+ L = A — 2T, L real symmetric.
Then by (6.5) and (6.4) we obtain

Eretr[iSg(V)] = Ea_siretr [iSg(V)] = |A| ™A — 2T "By etr iTZ + ISg(V)],
which is equivalent to the independence of Z and ¢g(V). ||

(6.2)

7. Special independence properties. In the following theorems the role of
the two square roots is exhibited more clearly.

TuroreM 7.1. If Sy, - - -, Sk are independently distributed, S; NIW(E, D, n;),
then the statistics W; = (81 + -+ + 8;)*S;u(S1 + -+ + 8)Hji=1, ---,
k — 1, are independently distributed, where the square roots are defined by the
triangular decomposition.
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Proor. This theorem has been known and used for some time, and an explicit
statement and proof is given by Khatri [5]. An alternative proof is based on the
fact that with the triangular decomposition, W, and S; + S; are independently
distributed, and hence W is independent of W, ,j = 2, -- -, k; similarly W, is
independent of W;,j = 3, ---, k, ete. ||

If the symmetric square root is used, this theorem no longer holds. We show
this for the case k = 2.

THEOREM 7.2. If S, S: are independently distributed, S; ~ W(I, p, n;), the
statistics Z = Sy + So, W = S78,ST?, where (S1)? = 81, are not independent,
and the joint distribution s given by (7.1).

Proor. From the joint distribution of S; and S., we wish to transform to Z
and W. To accomplish this we make some intermediate transformations, (i):
(81, 82) = (X, W), where X* = S;. W = X '8:X ", and then (ii): (X, W) —
(Z, W), where Z = X(I + W)X. The Jacobian for (i) is given by Theorem 5.1
and [7], J(S1, S: — X, W) = [lici(6: + 6;)|X|”*", where 6;, -, 0, are the
characteristic roots of X. For (ii), by Corollary 5.2, J(X — Z) = [[:<i(n: +
)", where 5y, -, 5, are the characteristic roots of (I + W)X (I + W)
Hence

c(ng, ple(ng, p)  |W[im??

lzl}(nﬁmg) II + Wl%(n1+nz—?—l)

p(W,2) =

(7.1)
. lZl%(n1+n2—p—1)e—§crz H (0,- + 0]‘)

i2i (ni + )’
W > 0, Z > 0. The independence of W and Z depends on whether
I1:<il(0: + 0;)/(n: + ;)] = g(6)/g(n) can be expressed as h(W)hy(Z), ie.,
as the product of functions of W and Z. Even for p = 2, this cannot be done.
To see this, we note that ¢g(8) = 4 |X| trX, g(9) = 4 |X| |I 4+ W|trX(I + W).
But

X = I+ W)U+ W)z + Wl + w)™,
and hence

g(8) _ |I 4+ W[ tr (I 4+ W)U 4+ W)'2(T + W)}
g9(n) tr (I + W3Z(I + W)
and it is clear that we do not get a factorization. ||
In the next theorem the partial sums are so arranged that either square root

may be used.
TuroreMm 7.3. If Si, - -, Sk are independently distributed, S; ~W(Z, p, n;),

then the statistics
X; = (81 4+ -+ 4+ Si)8imalSs + o 4+ S, j= 1 e k=1,

are independently distributed for any square root.
Proor. The following steps are easily verified. X, is independent of S; 4+

)
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Sz, and hence of X5, -+, Xj_1; X, is independent of S; + S. + S;, and
hence of X3, -+, Xp1, ete. ||
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