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1. Summary. Asymptotic expansions are derived for the behavior of the
optimal sequential test of whether the unknown drift u of a Wiener-Levy proc-
ess is positive or negative for the case where the process has been observed
for a long time. The test is optimal in the sense that it is the Bayes test for the
problem where we have an a priori normal distribution of u, the regret for
coming to the wrong conclusion is proportional to |u|, and the cost of observa-
tion is constant per unit time. The Bayes procedure.is then compared with the
best sequential likelihood ratio test.

2. Introduction. In the Fourth Berkeley Symposium on Probability and
Statistics, Chernoff [2] indicated that the problem of sequentially testing whether
the mean drift of a Wiener-Levy process was positive or negative given a normal
a priori probability distribution was relevant to the problem of deriving an
asymptotically (as sampling cost approaches zero) optimal sequential test of
whether the mean of a normally distributed variable is positive or negative.
The former problem was shown to be equivalent to the solution of a free bound-
ary problem involving a diffusion equation.

Incidentally a few properties of the solution were presented but nothing was
done about a precise representation of the solution.

Since then the authors of the present paper separately and together have en-
gaged in research and computation to characterize the solution more precisely
and to investigate the relevance of these results to other related problems.
These problems include testing problems for non-normally distributed random
variables, sequential design problems and problems involving other loss func-
tions. Because of the great variety of results and relevant applications it was
decided that it would be appropriate to publish these results in relatively small
pieces rather than to wait an unspecified time before all of the results could be
reasonably completed and assembled into one opus. In the meantime overlapping
results have also been obtained by Moriguti and Robbins (5], who have
approached this problem through that of testing whether a binomial parameter
exceeds or is less than } and by Bather [1].

The easiest part of the problem seems to be that of deriving the asymptotic
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behavior for large ¢t. That represents behavior of the Bayes strategy after a
great deal of sampling has been carried out. An asymptotic expansion was
derived in (1951) by D. G. Champernowne but was not published. Moriguti
and Robbins simply indicate several terms of the expansion without elaborating.
Neither do they nor Bather present any proof that the expansion is in fact a
valid expansion in the sense of yielding asymptotic approximations to the
desired optimum. The main point of this paper is to give such a proof.

3. Review of previous results and notation. In [2] the problem was essentially
presented as follows. Let us observe a Wiener-Levy process X7» with drift p*.
That is

(3.1) X5 =4t 4+ 7%

where Z7 is a continuous process of independent Gaussian increments with
mean 0 and variance determined by E(Z%) = o*'t*". The cost of an incorrect
decision is given by r*(4*) = k*|u*| and the cost of sampling is given by c¢*
per unit of time. The Bayes risk for an arbitrary procedure is given by
®* = E{c*T* + "(u*)k*|u*|} where T™ is the observation time and ¢*(u*) is
the probability of error corresponding to the mean drift u*.

It was shown that the transformation

X, = M
(3.2) b= ch*Qa*‘au*
— MR

yields the normalized problem where k*, ¢*, ¢* are replaced by k, ¢, and ¢ all
equal to 1. That is to say we observe

(3.1 X = ut + Z,

with E(Z,) = 0, E(Z}) = t, r(u) = |u|, a sampling cost of one per unit time,
and a Bayesrisk ® = E{T + e(u)|ul} = ¢** 1  ®* where T = ¢*%* o™ 1T%,
e(p) = (), and the parameter  has a normal a prior: probability distribution
N(uo , 00) with

Ho = c*_%]c*%o'*_;;z:)k
(3.3) oo — G
where ug and o are the mean and standard deviation of the normal a prior: dis-
tribution of u*. It is convenient to make an additional simple transformation
which is equivalent to starting the process from the point 2y = /oy at time
th = l/aﬁ. With this convention we have the technical advantage that the
a posteriori probability of u given X, = z is 91(2t ™, £ ') and the optimal solution
for all initial @ priors probability distributions can be represented by a single con-
tinuation set in (=, t) space. Then, if X, = z, the optimal procedure calls for
additional observation if and only if (z, ¢) is in the continuation region.
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Given that X, = z, the a posteriori risk due to accepting Hy:u = 0 is given by
0

(34) D*(5,0) = [ r(w)(t/2m)} exp [—t(o/t — w)'/2] du = CH ™)

Similarly the a posterior: risk due to accepting Hz:p < 0 is given by

(84)" D (z,t) = f r(u) (¢/27) exp [—t(x/t — w)’/2] dp = £~ (2t7).
0

The a posteriors risk associated with taking the best decision is

(3.5) D(z,t) = min [D¥(z, t), D™(, )] = t Y(at™)

where

(36) ¥'(a) = o(a) — ol — &(@)], ¥ () = ¢(a) + o®(a),

(3:7) o) = @07, #(e) = [ o) d,
and
=yt a a
59 Ue) = ¥(@) for a > 0,
=y (a) fora < 0.

Now let us consider an arbitrary procedure represented by a continuation set
in the (z, t) space with the understanding that when sampling is terminated the
optimal terminal action is taken. That is, we accept Hy:p = 0 if and only if
X > 0 at the time of termination. Let the a posterior: risk B(z, t) represent the
expected additional cost given X, = z. This includes the risk due to error and the
expected cost for additional sampling but does not include the cost of sampling
up to time ¢. Then B(z, t) satisfies the diffusion equation

in the continuation set. B satisfies the boundary condition
(3.10) B=D

except possibly on sections of the boundary where z changes while ¢ is constant.
The optimal procedure simultaneously minimizes B(z, t) for all (z, ¢) and is
characterized by the property that B(z, t) < D(z, t) inside the continuation
region. This condition of optimality can be converted to the additional boundary
condition

(3.11) B, = D,

which serves to determine the free boundary. In other words the optimal pro-
cedure, and the corresponding risk B(z, t) represent a solution of the free bound-
ary problem of finding a continuation set and a function B which satisfies the
partial differential equation (3.9) on the continuation set subject to the boundary
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conditions (3.10) and (3.11). At the same time the equations B; = D; and the
diffusion equation are satisfied on the boundary This means that

(3.12) 1+ $Bse = 3D,

on the boundary.

Some additional facts of interest are the following. First if the optimal bound-
ary is given by #(t), @ = & ? is monotonic decreasing in ¢. Second, the optimal
procedure does not truncate. That is to say that the continuation region has
points with arbitrarily large . Third, if the cost of sampling were given by some
rate ¢(z, t) when X, = =z, the diffusion equation would change to

(3.9)’ ¢(@, 1) + B + (2/t)B. + }B.. = 0.

Fourth, if the regret due to taking the incorrect action were some other function
of u, the termination risk D would change accordingly but the boundary condi-
tions would remain intact and D would still satisfy the ‘“costless” diffusion
equation

(3.13) D, + (z/t)D, + 3D.. = 0

except where D¥ = D™. Fifth, if a termination risk D(z, t) were prescribed by a
different rule, the optimal procedure for this D(z, ¢) would be represented by a
solution of the free boundary problem given by equations (3.9), (3.10), and
(3.11).

Finally, the converse inference in [2] that any solution of the free boundary
problem must correspond to a solution of the optimization problem was never
precisely proved. In fact it is not even true for general termination risk D(z, ¢t).
On the other hand this inference will be used in Section 4. The appendix contains
a lemma which is used to prove that the inference is correct where it is used in
Section 4.

4. Asymptotic expansions for large ¢. In this section we shall indicate a formal
derivation of an expansion for the optimal boundary #(¢) and the corresponding
risk B(zx, t) as t — « and we shall prove that these expansions are asymptotic
expansions in the sense that the error is small compared to the last term.

TaEOREM 1. Asymptotic expansions for &(t) and B(z, t) ast — © are given by

z(t)r_vl—{ Lyt L - B

(1) ) 19,591 2,085,862
_4 ’ ) 3 —5 . o .
T 3670 5,670 (41") 155,025 )™+ }
and
B(z,t)/t = —1 + Vo(a) + (22) 7 Vi(a) — (16£) ™" Vi(a)
5 a2 437 s 28991 , . 54
w2) T g(lﬁt) Vila) — === (168)7° Ve(a) + 2= =i (168°) ™ Vg(a)
16,476 572 47 556,611

— 2T (168)7° Viola) + (16*)° Vig(a) — - -

14,175 2,835
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where
(4.3) a=at?  V.(a) = F1 — §r,}; -4,

and F(B, v; w) = 1 4+ (8/1-v)u + [B(8 + 1)/1-2-9(y + D]’ + --- is the
confluent hypergeometric function.

For convenience we transform coordinates to p = ¢ a = z£* and let
v(a, p) = £ 'B(z,t). Then
(4.4) Vaa + e + 20 4+ 2 = 3pv,

subject to the boundary conditions
v(a, p) = p¥(a),  vala, p) = p¥'(a) = —p[l — &(a)] fora>0

4.5
(45) = pd(a) for a < 0"

Because of the symmetry we shall confine our attention to the upper boundary.
Incidentally, the additional boundary condition 1 + 3B,. = 1D., converts to

(4.6) Vaa(et, p) = po(a) — 2.

Note that as t — «, p — 0 and it is expected that « — 0, and it is therefore
reasonable to expect a power series solution in « and p. In fact the partial differ-
ential equation is satisfied by any finite number of terms of the series

v(a, p) = —1-4 CoVo(a) 4+ clle(a)
+ cp'Va(a) + -+ + epVo(a) + -

where V,(a) = F[1 — $r, &; —%a’] is an even solution of the differential equation
V’(a) + aV'(a) = (3r — 2)V(a). Note that for positive even r, F(1 — 3r/2,
1. —a%/2) is a polynomial of degree 37/2 — 1 in o’ with positive coefficients. For
r = 2, the coefficient of o’ is positive. Finally for a > 0

Y(a) = —a/2 + (2r)'F(—3,%; —d/2).

The extra boundary condition (4.6) suggests co = 1 and ¢; = ¢y = (21r)"*. Sub-
stituting these, our regular boundary conditions convert to

(4.7)

45) —1 + Vo(a) + pa/2 + cop’Va(e) + csp’Vis(a) + -+ =0
' Vi(a) + o/2 + &p'Vi(a) + ep'Vi(a) + -+ = 0.
Ifp=ba+ b+ --- + b andec,, - -, ¢ are such that these two equations

are satisfied within terms of the order of magnitude of """, the top boundary

Equation (4.8) can be uscd to obtain c,;; and the bottom equation can be then
used to obtain b,,; so that these equations are satisfied within O(a’*?). In this
way we derive the formal expansions for the upper boundary

42 5 2 31 o 1 1679 45 o

- & 5 2 3 5 31 o9
(4.9) p~4a—|-3a 154a+105 a 1390 a +

59,071
17,325

6 11
Lol — ..
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and for the risk we have

oy ) & —1 + Vola) + (20) pVi(a) — (g) Vala)

(4.10) + 3 (g) Vila) — 237 (’i)s Vala) + 22901 <§>8 Va(or)

3 45 \4 315
_16476,572 (p\" 47 556,611 (p\" _
W‘ (Z) VlO(Ol) + —2:8_3‘5— Z V12(Ol) .

It remains to prove that these expansions do yield asymptotic approximations
to the optimal boundary and associated v. Let

(4.11) ve(a, p) = —1 + cVo(a) + -+ + ep Vila).

We select a boundary p,(a) so that the bottom boundary Equation (4.8) is
satisfied exactly. Then

(4.12) pr(e) = by + boa® + +-+ + b’ + 0(H)

where the O(a’t") term coincides for « > 0 with a function which is analytic in
some neighborhood of & = 0, and hence p.(«) is monotone increasing for positive
a sufficiently small. The top boundary Equation (4.8) is not satisfied exactly.
Let us change D(z, t) to D,(x, t) = D(z, t) + t0.(p) where 6.(p) = 0™
is the discrepancy in the top boundary equation presented as a function of p along
the boundary p,(«). Then v, and p, represent the solution of the modified free
boundary problem where the stopping risk is D, and ¢ is sufficiently large. In the
appendix we prove that v, and the region inside = p, correspond to the optimal
procedure for the stopping risk D, .
Now let us consider two alternative functions

(4.13) =0+ Ko'V.(a) if 7 is even
=0, + Kp"'V,a(a) if r is odd

and

(4.14) v, =0, — Kp'V.(a) if r is even
=0, — Ko"'V,pa(a) if 7 is odd.

As in the above discussion we find associated boundaries o/ and p, and dis-
crepancies 6 (p) and 6, (p) where (taking K sufficiently large if r is odd) 67 (p)
coincides with a function which is analytic in a neighborhood of p = 0, p 61 (p) =
O(p?) is positive and monotone increasing for sufficiently small positive p.
Similarly p %6; (o) = O(p"?) is negative and monotone decreasing for suffi-
ciently small positive p. From the appendix it follows that pf and vf* =
v¥ — 67 (o) po’p! represents an exact solution for the minimizing problem where
D is replaced by DT = D + 6} (p)p t — 65 (po)pe’ = D for p < po. It then
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follows that v *(e, p) < v(a, p) in the continuation region for this modified
problem when p < p, sufficiently small. Let of be that value of a« for
which p (ad) = po. Then

(4.15) piD(ag, po) = ptDF*(ad, mo) = vt (ad, po) = v(ad, po)

and it follows that (a3 , po) is not inside the continuation set for the original
problem; i.e., &(p) = ai where & corresponds to the optimal boundary for the
original problem. Similarly, but somewhat more delicately, we define v; =
v; — 67 (p)po'e and D7 ™ =D + 6, (p)p ¥ — 67 (p)ps® = D for p < po (With
strict inequality for p < po) and v; (e, p) > v(e, p) in the continuation region
for the new modified region when p < p sufficiently small. Letting o be that
value of « for which p; (ag) = po, we derive for 0 < a < o

(4.15)" pdD(a, po) = p8D7 (e, po) > v; (a, po) > v(a, po)

and hence (aq , po) is in or on the boundary of the continuation region for the
original problem, i.e., @(po) = ap .

It follows that the optimal boundary for the original .problem is between
those represented by p; and p; each of which differs from by + ba” + -+ - + by’
by O(o"). Thus it is clear that v is approximated by v, in the continuation set.
Transforming and inverting the expansion for p we obtain the results of Theo-
rem1.

Certain remarks are in order. First, we have made use of the symmetry to
concentrate our attention on the upper boundary. If D were not symmetric, as
could be the case for a non-symmetric regret function 7(x), it would be necessary
to consider also odd solutions of the differential equation. That is to say that
we would also have to consider terms of the form p'aF[3(3 — 3r), §; —1d7].

Second, the proof seems to rely on the analytic nature of the stopping risk.
It seems evident that except for certain monotonicity requirements, there is
no fundamental need for analyticity. There is a somewhat less involved proof
using v, and the monotonicity of & which may be more difficult to generalize.

6. Comparison of the optimal procedure with optimal continuation regions
of the form | X | = a. Suppose that u has the normal a prior: probability distribu-
tion 9U(0, 7). This is equivalent to assuming that X, = 0. For comparison
purposes let us consider the Wald type procedure which consists of continuing
as long as |X,/| < a, for ¢ = . For each a there is a corresponding Bayes risk
R(0, t). Let ao(t) be that value of @ which minimizes the Bayes risk, yielding
Ry(0, t). We shall prove

THEOREM 2. For t sufficiently large,

1T 212

and

_ 11 f 5, 407 s,
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Implicit in the results of Wald [6] and of Dvoretzky, Kiefer, and Wolfowitz
[4] are the expression e(u) = (1 4 €)™ for the error probability and T(u) =
a tanh (au)/|u| for the expected observation time. Thus the Bayes risk cor-
responding to the 91(0, ) a priori distribution and the continuation region

X| < a,is

(63)  R(0,t) =2 f (t/2m)} exp (—tw’/2) {w(1 + €)™ + o™ tanh ap} dp.
0

Differentiating with respect to a, we have

(sech® v 4+ v " tanh v) exp (—t*/2a3) dv
0

(5.4) .
= (2a3)7" f v* 'sech’ v exp (—t’/2a3) dv.
0

Expressing ao and Ro(0, t) in terms of ay = agf "}, we have ap = n(a), % =
ao/1(ew), Bo(0,¢t) = £(ap) where

7 (o) = 2[ v’ sech’ v exp (—v/208) dv/
0

(5.5) .
2 f [sech® v + v~ tanh v] exp (—v°/2a}) dv
0
and
tle) =2 [ (27 exp (o220 | LEE E)7 ) tanbe ]
(5.6) = (2/=)} fb exp (—v*/2a0)
0

2
{___1)__ [1 — tanh o] + 'L@Ml_h_”} db.
2a0 () P

Finally, we may take v/, as variable of integration and expand %’ and £ in as-
cending powers of a . Thus

(6.7) 7'(a) = (od/4)[1 — (7/3)cd + (326/45)ab + - -]
and hence%t‘* = ob/4n* () = agll — (7/3)0“2) + (326/45)013 — ...T"s0 that
(5.8) ap = H1 — (7/3-4%)¢7° + [816/(45)4]¢° — ---}.

Theorem 2 follows immediately. Comparing the expansions of Theorem
2 with B(0, ¢) and £(¢) in Theorem 1 we see that, B(0, t) first differs from R,(0, ¢)
in the coefficient of ¢ where —407/4°(45) appears in place of — 437/4°(45).
On the other hand a, differs from #(¢) in the coefficient of ¢ * where —7/192
appears in place of —1/48 = —4/192. Thus for large ¢, Z(¢) is larger than a
and B(0, t) is smaller than Ry(0, ¢{) which are to be expected.
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6. Appendix. In this appendix we establish a lemma which may be applied
to show that in certain circumstances, the solution of the free boundary problem
represents the minimizing procedure and the minimizing risk. Before doing
S0 we point out that this is not true for general stopping risks. Counterexamples
can easily be constructed by reducing the stopping risk on a small part of the
interior of the continuation set or on a small part of the exterior of the continu-
ation set. The minimizing procedure for the original stopping risk remains a
solution of the modified free boundary problem. However in each case the
minimizing procedure for the modified problem changes. In the first case the
part of the interior where the stopping risk was reduced may fail to remain in
the optimal continuation set for the modified problem. In the second case, the
continuation set may be enlarged. In both cases the Bayes risk associated with
the optimal procedure is reduced. .

The key to our arguments is the approximation of the continuous time problem
by the discrete time problem and the backward induction used in the latter.
There is some minor convenience toward applying the backward induction in
using the coordinates (y, ¢{) where y = zt' = o™ This convenience derives
from the fact that ¥, = X,/ is a Wiener Process in the —¢ ™" scale. More pre-
cisely, the conditional distribution of Y, given Y, = y, (&4 = &) is normal
with mean y and variance

(6.1) Yo =t — b

We shall often find it convenient to express vy without subscripts when they
are understood without ambiguity.

Denoting the Bayes risk for a procedure by b(y, t) = B(z, t) and the stopping
risk by d(y, t) = D(z, t), the diffusion equation transforms to

(6.2) 1 + b, + b,/26 = 0.

The discrete problem is one where we are permitted to stop observation only
at a set of discrete time points. If at (y, t) we decide to continue observation
until time ¢ 4+ 8 when the risk is given by b(y, t + §) our risk will be

ho(y,8) =8+ E{b(Yis, t+6) | Y, =y}

(6.3) -
— 5+ f_ b(y + ev, ¢ + 8)ele) de, Y= Vewss -

This function h; plays a key role in the backward induction for the discrete
problem. Consider the truncated discrete problem where stopping is permitted
only at times &, & — 8, & — 28, --- , to — (n — 1)8, t where ¢ = # — nd and
the risk at time & is b(y, &) . Denote the optimal risk by bs(y, £; &)-

The relation between the Wiener process and Equation (6.2) and the related
heat equation require some additional terminology and notation.

DeriNITION 1. A measurable function d(y, t) is regular if for each ¢t > 0,
there is a continuous function K(¢) > 0 such that

(6.4) ld(y, 1)] = K(t) exp [K*(1)y’].
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If d is regular and 2Ky < 1,
(6.5) [ dly + ev, t)e(e) de = 28 K(0) exp [2K*(2)y"].

Let R be a subset of the half plane ¢ > 0, ®(R) the boundary of R and 9(R)
the interior of R. Let R;, = R N {(y, ): ¢ < &}. Let f be a solution of the diffu-
sion equation

(6.6) fo+ fu/28 =0

on 9(R.,) subject to the boundary condition f = d on ®B(R,,) for the regular
function d. With the appropriate interpretation of the boundary condition
(see [3]), when Ry, is a bounded set f is uniquely determined on R, by

(6.7) f(y, ) = Ba@*, 19 | Y. =y}

where (Y™, T) is the first point after time ¢ where the Wiener process through
(y, t) intersects ®(R,,).

Let d(y, ) be a regular function and B a set such that R,, — R; is bounded
when 0 < ¢ < % . Let by(y, t) be the risk associated with the minimization
problem for which d is the stopping risk. Let R, be the corresponding continu-
ation set. Finally let b(y, ¢) be a regular function equal to d on the complement
of R and satisfying Equation (6.2) on R subject to the boundary condition b = d.
Then we have

Lemwma 1. If

(1) supy [b(y, &) — bo(y, t)| > 0ast— o

(ii) b(y,t) < d(y,t) on R and

(iii) for some t and each t = 1, there is a 8(¢) > 0 and 6:(t) > 0 such that
hs(y, ¥) = d(y, t') whenever (y,t) 2R, 8 < 8(1) and |’ — t| < 8:(t). Then b(y, t)
and R represent a solution of the minimization problem for t = t and b(y, t) =
bo(y, t) fort = & .

Proor. Condition (i) implies that be(y, t) = lim,, . lim,,o bs(y, ; t). Applying
the Heine Borel Theorem to [f; , £] we have the existence of 6(#) > 0 such that
hs(y, t) = d(y, t) whenever (y, 1) 2R, 8 < 6(t) and t; < ¢ < t). We take § <
min [8(4), #1/4K*(t)] where K corresponds to the regular function d which
incidentally dominates b. Then we may represent h,—.(y, t) for 0 < ¢ < & by

(6.83) hto—t(y, t) = fo — t + E{b(Yto s to) | Yt = y}
or

° 2 — y\ dz _ _
(6.8b) hegi(y, 1) = to— 1t + f_w b(z,to)sv( ; y) 7,72 =t — &

from which it follows that h_.(y, t) satisfies (6.2) for {(y, $):lp — 6 = t < &}
and may be regarded as the restriction of a regular function on that set. Hence
hey—i(y, £) — b(y, t) satisfies (6.6) for B N {(y, t):ts — 6 < t < &} and, being
non-negative on B(R,,), is non-negative for (y, t, — &) ¢ R. This together with
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the Condition (ii) yields
(6.9) b(y,to— 8) < min [hs(y, b — 6),d(y, to — 6)] = bs(y, to — 8; to).

This in turn implies that bs(y, &; to — 8) < bs(y, t; &) for t < ¢, — & and the
argument leading to (6.9) gives

(6.10)  b(y, b — 28) = bs(y, to — 2858 — 8) = bs(y, bo — 26; k).

Proceeding in this way through the time points &y ,% — 6, --- , 6o — (n — 1)8, 4,
where {; = t, — nd, we conclude b(y, t) < b;(y, ¢; &) and hence b(y, t) =< bo(y, )-
But b is the risk associated with the procedure R and hence Lemma 1 follows.

Now let us apply Lemma 1 to the three cases mentioned in Section 4. These
were the modified problems corresponding to D, , D" and D; . In each case,
the boundary conditions associated with solving the free boundary problem,
knowledge of the second derivative of risk with respett to y, and a property of
the unmodified stopping risk is used to establish Conditions (ii) and (iii) of
the Lemma. We shall treat the three modified problems simultaneously, using
an asterisk to denote the appropriate modified expressions such as b*, d*, v*,
ete.

At first we recall that for the unmodified problem the stopping risk d(y, t) =
3 (yt') = min (d*, d°) where d" corresponds to the risk of stopping and

accepting u > 0, and satisfies
61)  d@i—8) = [ @+ ede@de 7=,

This equation holds for general regret function since the right hand side may be
interpreted as the risk associated with the following situation: After observing
Y.s = y, we are allowed to observe Y, free of charge but we have decided to
accept 4 > 0 irrespective of the value of ¥, .

Second, for each of the modified problems we have

(6.12) & — d = 18*(p) = K*(1) = O

and the arguments which yielded monotonicity and analyticity of p.(a) also
yield dh*/dt = O(tF).

Third, for ¢ sufficiently large, it is easy to compute that
(6.13) by, — dy, = [2 + 0(1)]¢ uniformly for |y| < §*

where §* is the y value associated with the free boundary solution p*, v*, of the

modified problem.
Equation (6.13) together with the two boundary condition imply that b* < d*

for |y| < §* which gives Condition (ii), of Lemraa 1. These also imply that for
arbitrary » > 0 and ¢ sufficiently large

(6.14a) [b* —d™* = (1 + 9y — §°)° for0 <y < §*
where dt* = d* + K*(¢). Since d* = d™* for y > 0,
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(6.14b) v —dt* =0 fory = 4"

Finally comparing d* with d~, we have for some constant K,

(6.14c) [p* — d**| < Kly| fory < 0.
We are now ready to establish Condition (iii). For y > 4" and v = ves:

Wt =) =5+ [ 5+ en ole) de
=5+ [ : [B*(y + ev,8) — d™ (y + ev,0)le(e) + d* (y,t — 8) + 1* (1)

W= ) —d* (g —9) =+ [ :[b*(y + e, ) =™ (y+ev, lole)
+BE(1) — Bt - 9)

(6.15) Ri(y,t—08) —d*(y,t —8) =6 — 3(1 + n)7'f — Ko(v") — s0(t™").

Substituting v* = (¢ — 8)~' — ¢, Condition (iii) follows.

Condition (i) is trivial. Thus in each of the three modified problems, the free
boundary problem solutions yield the minimizing procedure. It should be noted
that that result has not been established for the original (unmodified) problem.
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