ASYMPTOTIC BEHAVIOR OF EXPECTED SAMPLE SIZE IN
CERTAIN ONE SIDED TESTS!

By R. H. FARRELL

Cornell University

0. Summary. Let R be the set of real numbers, ®, the set of Borel sets of R,
and u a o-finite nonnegative measure on ®; . Let Q@ be an open real number in-
terval (which may be infinite). Throughout we consider a Kcopman-Darmois

family
(1) {h(6) exp (0z), 0 € O}

of generalized probability density functions on the measure space (R, ®,, u).

We consider one sided tests T of the hypothesis § < 0 against the alternative
6 > 0. In general, in this paper, T' will be a sequential procedure. Associated
with T is a stopping variable N (mention of the dependence of N on T is usually
omitted). N = 0. N = n means that sampling stopped after n observations
and a decision was made. In this context we consider « to be an integer, and
N = o means that sampling does not stop.

In the discussion of Section 1 we will assume that if 6 ¢ @ and 6 # 0 then
Po(N < =) = 1, that is, sampling stops. with probability one. The reason for
the exclusion of § = 0 will become apparent in Section 1.

We will be concerned with two events, decide 8 < 0, and, decide 6 > 0.
The main result of this paper may be stated as follows.

TurorEM 1. Suppose (R, B, , u), @, and {h(8) exp (0z), 6 £ Q} are as described
above. Define

™ =f h(8)z exp(6z)u(dzr),
2) .
o = f R(0)z’u(dz),
and assume pg = 0. Suppose 0 < a < 1land 0 < B < 1 and
(3) supsso Ps (decide 6§ < 0) < B; SUps<o Ps (decide 8 > 0) < a.
Then
lim supg.o;. po|log|log|us||| BN = 206°Po(N = «);

(4) . 2 -1 2
lim supg.o— us|log|log|us|||EsN = 206°Py(N = ).
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If a + B < 1 there is a generalized sequential probability ratio test T with stop-
ping variable N such that for the test T,

(5) Py(N = o) =1 — (a+ 8); (3) holds;
for the test T,
(6) limg.o uglloglog|us||| BN = 20°Po(N = ).

For all tes's T, if Po(N = o) > 0 then limg.o ’E;N = .

In Section 1, (7) and (8), it is shown that Po(N = ©) =21 — a — 8.
Consequently the relations (4) and (5) of Theorem 1 are not vacuous.

We were led to formulate Theorem 1 by a problem of constructing bounded
length confidence intervals. The relationship is explained in Section 2. The proof
of Theorem 1 is given in Section 3.

1. Introduction. If 8 > 0, Py (decide 8 < 0) is sometimes called the prob-
ability of an error of Type II; likewise, if 6 < 0, Py (decide § > 0) is the prob-
ability of an error of Type I. We refer here to the description of the testing prob-
lem given in Section 0. The main hypothesis of Theorem 1 is that these
probabilities should have bounds 8 and o respectively.

When, in a testing problem, one asks for such upper bounds on the prob-
abilities of wrong decisions, one has a problem which has been termed ‘“Dis-
tinguishability of sets of distributions” by Hoeffding and Wolfowitz (7]. In the
problem of Theorem 1 one might expect limy.o EsN = o since if 8 is near zero
in value it will be difficult to distinguish on the basis of the observations whether
6 > 0 or § < 0. It is the purpose of Theorem 1 to give a measure of how dif-
ficult it is to distinguish between 8 > 0 and 8 < 0 by giving an asymptotic
inequality on EsN as 0 tends to zero. To show that the inequality obtained is
best in some sense, we show that the lower bound is attained for certain gen-
eralized sequential probability ratio tests.

To obtain some feeling of the asymptotic order of magnitude one might ex-
pect it is of interest to apply the lower bounds for ExN developed by Wald [10].
If we consider « and 8 fixed and for the family of generalized density functions
(1) test the hypothesis 6 = t against the hypothesis § = —¢ then as t — 0+
one finds an asymptotic lower bound for E,N which is ¢/ (13), ¢ a constant. The
lower bound of Theorém 1 differs by a magnitude of [log|log|u||.

If one tries to prove an analogue of Theorem 1 for other one sided testing
problems one quickly discovers that the ‘‘nice” results of Theorem 1 are very
dependent on the special form of the Koopman-Darmois generalized density
functions (1). In fact, suppose 6(-) is a continuous and strictly increasing func-
tion of we @, 8(0) = 0. We may generalize Theorem 1 by allowing

{h(8(w)) exp (6(w)z), w & D}
to be the family of generalized density functions. It is not difficult to show that
(see (2)) limy,o ue/t = o°. Theorem 1 implies

lim sup..o (8())"[logllog|8() ||| BN = (2/0")Po(N = ).
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This lower bound is achieved by a generalized sequential probability test.
Therefore by a suitable choice of 6(-), E.,N may be made to have as large or
small order of magnitude as desired as w — 0.

Suppose f = 0 and [, f(z)dxr = 1. We consider briefly the translation
parameter problem of testing the hypothesis 6 < 0 against the hypothesis
6 > 0 for the family {f(- — 8), — o < § < «} of density functions. We will
suppose 8 > 0 and « > 0 given and discuss tests satisfying (3). Let g(-) be
defined by g(z) = [*.f(y)dy. It is a standard result that the derivative
¢ () exists for almost all 2 (Lebesgue measure), and ¢'(z) = f(x) for almost
all z (Lebesgue measure). Let a be a real number such that ¢'(a) = f(a) > 0.
Then

a+0
lime.o(1/0) [ 1(4) dy = f(a).

Let {X,,n = 1} be a sequence of independent random variables each having
f(- — 8) as density function. Let x be the characteristic function of (— «, aJ.
Then {x(X,), n = 1} is a sequence of independently and identically distributed
Bernoulli random variables which may be used to test the hypothesis § < 0
against the alternative § > 0. By definition

Px(X) = 1) = [ f(z = 6) dz = g(a — ).

By Theorem 1 there exists a test for the problem stated such that
limg.o [g(a — 8) — g(a)["lloglloglg(a — 6) — g(a)|[["EN
= 29(a)(1 — g(a))(1 — a — B),
or,
limg.o 0*[logllog|6]|| "E:N = (1 — « — 8)(2g(a)(1 — g(a))/f(a)).

The test which gives these limiting results will, of course, be a generalized se-
quential probability ratio test in terms of the Bernoulli random variables con-
structed above.

Thus, for one sided tests of a location parameter it will always be possible
to obtain an order of magnitude 6 *log|log|é||| for EeN. In some cases it is
possible to do better than this. It may happen that ¢’ (z) = f(z) for every x and
that f(a) = o for some value of a. If in the argument of the preceding para-
graph we use such a value of a it follows that

limg.,o 6°|log|log|6]|| 'EsN = 0.

These considerations give no information about lower bounds to EsN. Suppose
f = g1 * g2 , the convolution of density functions g, and g. , and that g» is a normal
density function. If {X,, n = 1} are independent random variables with com-
mon density function g., and if {¥,,n = 1} are independent random variables
with common density function g, and if {X,, Y»,n = 1, m = 1} are mutually
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independent then {X, + Y,,n = 1} are independent random variables with
common density function f(- — 6). Consequently a one sided test of § < 0
against 6 > O for the family {f(- — ), — o < 6 < «} can be interpreted as a
one sided test for the family {g.(- — 0), —© < 0 < o} using {X,.,n = 1}.
By Theorem 1 there is a constant d > 0 such that

lim supy. 6°[log|log|6||| " EN = d.

(See the remark following the statement of Theorem 1; we assume here that
a + B < 1.) That is to say, in testing whether a location parameter is positive
or negative, the smoother is the density function the more difficult is the testing
problem.

We close this introduction with a few remarks. It follows from standard
results on the Laplace transform that for a Koopman-Darmois family (1), h(-)
is an analytic function of 6 such that the real part 6 £ Q. Further it is easily seen
that expressions like D7~ (h(:))*P¢,(N = %, decide § > 0) are convex func-
tions of 6 £ Q. Therefore such functions are continuous functions of 6 ¢ Q.

Suppose there is a number M > 0 such that for the test T, Po(N = M) = 1,
0 £ Q. From the remarks of the preceding paragraph the power function of T
is a continuous function of 6 ¢ Q. A test T which satisfies (3) cannot have a
continuous power function if @ + 8 < 1. Therefore if « + 8 < 1 and a test T
satisfies (3) then 7' must have the property that for every n = 1 there is a
0, £ @ such that Py,(N = n) > 0. There is a function x on Euclidian n-space
to [0, 1] such that

PNza+D) = [ [xt@, o, m)06)

- exp (0 21 xi> u(dzy) - - p(dz,).

It follows at once that if Po(N = n 4+ 1) = Ofor some 6 £ @, then Po(N = n + 1)
= 0 for all 6 £ Q. Since (h(-)) "P (N = n + 1) is a convex function of 0 ¢ Q it
is a continuous function of 6 ¢ @. Therefore it follows that if T is a test satisfying
B)andif a + 8 < landif n = 1,and C C Q is a compact set, then
infgec Po(N = n) > 0.
As was observed above, P.,(N = n, decide § > 0) is a continuous function
of 6 £ Q. By Fatou’s lemma,

Po(N < o, decide 8 > 0) = D Po(N = n, decide § > 0)
n=0

IIA

(7 lim infe.o 2, Po(N = n decide 6 > 0)
n=0

=< liminfs,o. Ps(N < o, decide § > 0)
=< lim sups.o- Ps(N < «, decide § > 0) =Za.
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Similarly,
(8) Po(N < o, decide § < 0) =< lim sups.o4+ Ps(N < «, decide § < 0) < 8.
In particular,

P(N=w)=21—0a—28

Throughout we will use the abbreviation “GSPRT” for “‘generalized sequential
probability ratio test.”” In the context of this paper GSPRT’s take the following
form. There are real number sequences {a,,n = 1} and {b,,n = 1}. Let
{X.,n = 1} be a sequence of independently and identically distributed random
variables with the common generalized density function hA(8) exp (6z). If n = 1
let S, = X; + -+ + X, .If N is the stopping variable for the GSPRT T, and
fNz=zZnz=1thenifl £7=n—1,a;, £ 8; =b;. If N =nand ¢ > 0is
the decision taken, then S, = b,. If N = n and § < 0-is the decision taken,
then S, = a, .

If the test T is a GSPRT it follows by arguments similar to those used by
Lehmann [8] that P,(N < «, decide § > 0) is a nondecreasing function of 6.
Since Py(N < «, decide 6 > 0) = lim,., Ps(N = n, decide 8 > 0) it follows
that P(,(N < o, decide 6§ > 0) is a lower semi-continuous function. From
lower semi-continuity it follows that

Py (N < o, decide 6 > 0) =< lim infy.s, Po(N < o, decide 6 > 0)
=< lim supg.e,— Po(N < oo, decide 6 > 0)
= Po(N < oo, decide § > 0).

The last inequality follows since P(,(N < «, decide § > 0) is a nondecreasing
function. It follows that if the test T is a GSPRT then Py(N < o, decide
6 > 0) is left continuous. Similarly, for a GSPRT it may be shown that
P (N < «,decide 8 < 0) is a nonincreasing and right continuous function of

0¢eQ.
Of particular interest in the sequel is the following. If the test T is a GSPRT

and if o and B are as in (9) and (10) then

a = sups<o Po(N < o, decide 6 > 0)
(9) = Py(N < «,decide § > 0)
= limg,o— Po(N < oo, decide 6 > 0).

Similarly
(10) B = Po(N < o, decide § < 0).

It follows that for GSPRT’s if « + 8 < 1 then
(11) a+ B = Py(N < o).
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Throughout we suppose 0 ¢ @ and that we are testing the hypothesis § < 0
against the alternative § > 0. We have assumed in the statement of Theorem 1
that

0 == [ auldo).

These assumptions are removable and are made to simplify the subsequent
notation and computations. Suppose 6, £ 2. We consider one sided tests of the
hypothesis § < 6, against the alternative 8§ > 6, . It can easily be seen that by
making a translation of the parameter space and defining h;(-) and w(-) by
hi(8) = h(8 + 60), m(A) = [4exp (6oz)u(dz), the above problem is equivalent
to testing the hypothesis § < 0 against the alternative § > 0 for the Koopman-
Darmois family {h;(6) exp (6z), 6 £ Q2 — 6. Define. a new measure us(-) by,
if Ae®, then py(A) = w(c + A). The constant ¢ = h;(0) [ zui(dz). Then
since 1 = hy(0) [ wm(dz) it follows that

0= h(0) [ (&~ Jmlds) = m(0) [ aalda).
Further if we define ho(-) by he(8) = h;(0) exp (c6) then

1 = h(6) f exp(62)m(dz) = hi(8) exp(ch) f exp(8(z — ¢))u(dz)

= ha(0) [ exp(6a)u(da).

Consequently, without loss of generality, we assume in the sequel that 0 ¢ Q,
h2(0)f zua(dzr) = 0, and that the hypotheses being tested are 8 < 0 against
0 > 0. We will in the sequel write “A’’ and “u’’ instead of “hy”’ and “us”.

Finally, suppose X is a random variable having the generalized probability
density function h(8) exp (6x). In the statement of Theorem 1, yy = E4X and
o* = EX*. The argument of the preceding paragraph says that in the general
case, in which we are testing the hypothesis § < 6, against the alternative
6 > 6,, we may simply change to the random variable ¥ = X — g, and the
parameter 6 — 6, in order to apply Theorem 1. These comments will help under-
stand the application made in Section 2.

2. Bounded length confidence interval procedures. Let D, be the set of all
distribution functions such that if F ¢ D, then there is a real number v, (called
the p-point of F') satisfying, if ¢ > 0 then F(v,,r + ¢) > pand F(y,,r — ¢) < p.
Suppose numbers @ > 0 and L < 0 are given and a confidence interval procedure
is given. The procedure specifies three sequences of functions {6,, n = 1},
{a, ,n = 1} and {b, ,n = 1} such that if {Z, ,n = 1} is a sequence of independent
random variables with common distribution function ¥ ¢ D, , then §,(Z,, - - -,
Z,) is the conditional probability given Z,, - -- , Z, that sampling stops on the
nth observation. If N is the stopping variable for the procedure then P-(N = n)
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= Ev6.(Zy, -+, Z,). We assume that if F & D, then D> o o Ps(N = n) = 1.
If sampling stops when N = =n, a confidence interval [b,(Z, ---, Za.),
a.(Zy, -+, Zn)] (i.e., the closed real number interval with the specified end
points) is formed. In the sequel we write ay = ax(Z;, ---, Zy) and by =
bn(Z1, -+, Zx). The confidence interval procedure is to have the properties
that

(12) if F ¢ D, then with probability one, ay — by < L,
and Pe(vp,relbr,an]) =21 — a.
We will further suppose that if F ¢ D, then ExN < o, where N is the stopping
variable of the confidence interval procedure.
One may expect, for a given confidence interval procedure, that if F if “flat”
about its p-point v,,r then E¢N may be “large”. We now make these ideas
precise. Suppose 0 < p < 1. We define a measure of flatness by

er = SUPocpo<1 Min (F(yp,r + pL) — p, » — F(vp,r — (1 — p)L)).

It is easily verified that if F is continuous then there is a number pr satisfying
0 <pr<1land

er = F(ypr + prl) — p = p — F(vp,r — (1 — pr)L).

In the following we will say that a density function f( - ) is bimodal if there are
numbers d, , d; , and d; such that f( - ) is a nondecreasing function if x £ (— «, dy
orif z € [dy , do], and f( - ) is a nonincreasing functionif z ¢ [dy ,di] orif x € [d2, = ).

We now state and prove the following theorem.

TueoreM 2. Let D} < D, and suppose D} contains all F in D, having bimodal
density functions which are continuous and everywhere positive. Suppose o > 0 and
L > 0 and a confidence interval procedure are given such that if F & Dy the confi-
dence interval procedure gives an interval [by , an] such that (12) holds. Then,

(13)  lim Supep-o,ren; (€r)’|logllog|es||| "EsN = 2(1 — 2a)p(1 — p).

Proor. We will suppose in the following that L = 1. It will be clear how to
modify the argument for smaller values of L. We will show below that the class
D} may be extended to include other distribution functions F to which the confi-
dence interval procedure may be applied without violation of (12) or the other
assumptions above. Call the extended class D3*. Among those F ¢ D3* will be
all F having density functions f,(-), 0 < ¢ < 1, ¢ ¥ p, defined by

flz) = ¢ if 02251,
folz) =1 —¢q if 2L =2z =<2L+1,
fo(x) = 0 otherwise.

Let F, be the distribution function corresponding to the density function f,,
0<gq<1,q# p. We will first show that Theorem 1 gives information about
;N as ¢ — p. We then discuss the extension of D} to D3*.
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If {Z,, n = 1} are independent random variables which have the common
density function f,(-), we apply the confidence interval procedure. Sampling
stops with probability one and an interval [by, ax] of length <L is specified.
If ¢ > p the p-point of Fy( -) is v,,»,= p/gq, while if ¢ < p the p-point of F,(-) is
Yo.r, = 2L + (p — ¢)/(1 — ). Since the interval [by , ax] covers the p-point
of Fy(-) with probability =1 — « we are able to construct a one sided test of
the hypothesis ¢ < p against the alternative ¢ > p such that

SUpPg<p Po(decide ¢ > p) = a; SUPg>p Py(decide ¢ < p) < a.

The terminal decision rule of the test is as follows. We decide ¢ > p if [by, ax]
has points in common with [0, 1]. Otherwise we decide ¢ < p.

The test just described is really a test about Bernoulli random variables. To
see this, suppose {Z;,,, n = 1} is a sequence of independent Bernoulli random
variables having the common probability P(Z;,» = 1) = ¢, n = 1. Suppose
{Z2n, n = 1} is a sequence of independent random variables, independent of
the sequence {Z;.,n = 1}, each uniformly distributed on [0, 1]. If n = 1, let
Zn = Zynlom + (1 — Z1,)(2L + Z,). Then {Z,, n = 1} is a sequence of
independent random variables with common density function f,(-).

It follows that from the given confidence interval procedure we may con-
struct for the family of Bernoulli distributions a one sided test of ¢ < p against
¢ > p which has the form described in Section 1 with & = 8. From Theorem 1
we find

lim sup,-, lg — p[*lloglloglg — pll["EN = 2(1 — 2a)p(1 — p).

It is easily shown that er, = |¢ — p|. It follows that if the distribution functions
F,(-) were in D} then Theorem 2 would hold.

We now consider the problem of extending the class D} to a class D:* which
contains the distribution funections F,(-),0 < ¢ < 1, ¢ #* p. The density func-
tions f,( - ) are upper semi-continuous, bimodal, and are zero outside the compact
set [0, 1] U [2L, 2L + 1]. Let 0 < ¢ < 1 and ¢ 5 p. It follows that in D} there
is a sequence {F, ,n = 1} such that if n = 1, F, has a continuous density func-
tion f, and there is a real number sequence {d, , n = 1} for which

ifn=1 —wo <2< o,then d,fo(2) = dpyifars(z) = fo(2),
and lim,,., d.fu(2) = fo(z).

Since f,(-) and f,(-) are probability density functions it follows that if n = 1
then d, = 1. From the monotone convergence theorem it follows that lim,.. d, =
1. Therefore if — o < z < ©, liMyy fu(z) = fo(z). Let F, be the distribution
function corresponding to the density function f, . From the observations just
made it follows that f, — f,in L;(— , ) asn — . This implies that F,(-) —
F,(+) uniformly as n — «. We therefore conclude that

(14)

(15) hmﬂ-’w €r, = €F, ; limn—»ao Yo,Fn = Vp,F, -
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We now examine Er N. From (15) it follows at once that inf,»; er, > O.
Consequently if for the given confidence interval procedure it were true that
sup,»1 Er,N = o then Theorem 2 would follow trivially for the class Dj .
Suppose sup.»1 £r,N < . By Fatou’s lemma,

0

@ > lim infpw Br, N = lim infpe Er, D, mon

m=1

(16) =y mf lim infrse 6 (21, -+ , Tm) I=Ilf,.(xi) I=]1:dx¢-

m=1

= i mf‘sm(xl,"' ,xm)IZIlfq(xi) I:Ildxt = Eﬁq N.

m=1

Then Pr,(N = ©) = 0and B, N < «. .
fo(+) is continuous except at four points. If {p,, n = 1} is a real number
sequence and lim,.. p, = O thenif —w <z < o,

(17) lim inf, e dufa(z + pp) = lim info.e fo(z + pn) = fo(x)

except at the four points of discontinuity of f,(-). We make the explicit choice,
(18) ifn =1, = Ypr, — Yo.rg -

From (15) it follows that lim,.. p, = 0, as is required for (17) to hold. A change
of variable shows that

Tp,Fq
p=[ izt ) da

In the next steps of the argument we work with the density functions
{fa(+ + pa), » = 1} which have a common p-point v,,r, .
Let {65 ,n = 1} be defined as follows. If n = 1,

5:(:1;1 y T xn) =1 if 'Yp.qu[bn(xl y T xn)) an(xl y T xn)])
on(zy, -+, x,) = 0 otherwise.

Then, if d* = P(v,.7, 2 [bo, adl),

PFq('Yp,Fq Z[bN ) a’N]) = d* + Z=1 f Bm 6:»I=]; fQ(xt) Islldxz
<@ + 3 [ liminfe g 65 I fuCoe + po) IT o
m=1 =1 =1

é d* + ,,.2=:1 lim infn—>eo f Om 6:: I=Ilfn(x1 + Pn) 1I=Il dx1

< d* + lim infraw 3 /a,,, 5% 11 fu(zs + pa) I] da: < o
m=1 7=1 =1

In a similar fashion one may verify that Pr (ayv — by > L) = 0.
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From (16) and the conclusions just drawn it follows that the given confidence
interval procedure may be validly applied to the distributions F,, 0 < ¢ < 1,
g # p. Further, from (15) and (16) it follows that if 0 < p < % then for n
sufficiently large, Er,N = (1 — p)Er N and (1 + p) = er,/er, = (1 — p).
From this and the earlier remarks about construction of tests from confidence
interval procedures Theorem 2 now follows.

A minor modification of the proof of Theorem 2 will show that the Theorem
remains valid if the decision procedure gives a randomized confidence interval
after sampling stops.

In a subsequent paper we will show the construction of confidence interval
procedures having confidence level 21 — « and giving confidence intervals of
length <L for the p-point of distribution functions. These procedures are com-
pletely nonparametric in the sense that they may be validly applied to any
distribution function F such that ez > 0 even if F #D, . In fact, confidence
interval procedures may be constructed in such a way that if 6 > O then
sup {ErN | er = 8} < . Further these procedures may be constructed in such
a way that

lim SUp. ;-0 €x|logllogler||| "ExN < 4(1 — (a/2))(p(1 — p)).

This work is presently contained in Farrell [4].

Tests of the type discussed in Section 1 have been constructed and applied
to a different type of confidence interval problem in Farrell [5]. Similar tests
have been studied by Fabian [3].

Weiss [13] has shown that, so long as one considers only unimodal density
functions, then it is possible to construct confidence interval procedures having
confidence level =1 — « and giving confidence intervals of length <L for the
p-point of the distribution functions, the constructed procedures using only
two stages of sampling. Although it is not completely clear from his results we
suspect that our Theorem 2 is false in Weiss’s context.

3. Proof of Theorem 1. In the sequel we examine the behavior of EyN for
6 > 0. It will be apparent that the results proven below have corresponding
dual results stated about § < 0. Consequently the proof of statements about
6 < 0in Theorem 1 are omitted. The reader should observe that if () is de-
fined by u(A4) = u(—A) for sets A ¢ B, then {h(—0) exp (0z), —0 ¢ O} is again
a family of generalized probability density functions relative to (R, ®, , w) and
this device can be used to prove the remainder of Theorem 1.

Section 3 is divided into three subsections. In Section 3.1 we prove the existence
of a test S having an upper boundary (see below) which is better (again see
below) than the given test 7. In Section 3.2 a series of lemmas are proven about
tests having an upper boundary. Section 3.3 takes the results of Sections 3.1
and 3.2 and gives a proof of Theorem 1.

Before beginning the subsections we mention some facts about the function
h(-) (see (1)) and the expected value (. It was observed in Section 1 that
h(-) is an analytic function of 6 such that the real part 6 £ Q. Below we use
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derivatives and power series expansions of A(-). The function u.., was defined
by (2). Since

(h(8))™" = fexp(Ox)u(dx),

(it is well known that we may differentiate under the integral and in the sequel
this is done without comment) taking a derivative we find
(19) pe = —h'(0)/h(0),

where &'(-) is the derivative of A( - ). Therefore

L= La(o) [ o expleniutaz) = (H(0)/m(@)h0)

(20) [ = exp(ox)uldz) + ho) [ 2 oxplbw)u(dz)

= '—(po)2 + E'o )(2 = V&I’o X > 0.

In particular it follows that u(., is a strictly increasing function of 6 ¢ @. Since

we assume uo = 0 it follows that if § = 0 then uy = 0. Also, from I"Hospital’s

rule it follows that limg.o ue/8 = o*, a fact, referred to in an earlier section.
From (19) follows

(21) h'(0) = 0.

From (19) we may obtain the formula

(22) (d/d6)us = —h"(6)/h(6) + (h'(6)/R(0))".
Evaluation at zero then gives h”(0) = —o’h(0). We may then write
(23) h(8) = h(0) exp (—%(c* + 0(6))6).

By O(f(8)) we mean a function of 6 such that lim sups.o |0(f(8))/f(8)| < .

3.1 The test S. In this section we construct a test S from 7. The test S, which
is a test with upper boundary in the sense described below, will be used to prove
Theorem 1. We will give the construction of S using the type of argument used
by Weiss [12] and will give the construction of S in a context somewhat more
general than needed to prove Theorem 1.

In this section tests will be described in terms of Borel subsets of Euclidian
spaces. The decisions made are determined by the Borel sets containing the
values of observed random variables. We suppose R is the set of real numbers,
®; the set of Borel subsets of R, and u a nonnegative o-finite measure defined on
®, . @ will be an open real number interval. {p(-), 6 €@} will be a family of
generalized probability density functions on the measure space (R, ®;, u).
{X.,n = 1} will be a sequence of independent random variables each having
pe(+) as generalized density function. {Z, ,n» = 0} will be a sequence of random
variables such that {Z,,n = 0, X, m = 1} are independent and if n = 0 the
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joint distribution of Z,, - - - , Z, is specified by the description of the test (T or
S as the case may be) but does not depend on the parameter 6 ¢ Q. The random
variables {Z, , n = 0} are used for the purpose of randomization.

In order to describe the decision rules of a test we need additional notation.
Let R™ be Euclidian n-space, ®, be the set. of Borel subsets of R™. A test T
specifies sequences of sets {T:4¢(n),n = 0} and {T:4,(n),n = 0}. A sequence
(VS m = 0} is formed by defining

Ve - 20
Ve =%, X1, %, , X, Za}, nezl

We assume thatif n = 0,7 = 0, 1, then T:4:(n) € Bon4a -

We will now describe the decision rules in terms of two abstract decisions
do and d; . At the start Z, is observed and a randomized decision made as follows.
If Z, = 2, take an observation on the pair X;, Z, ; if-Z, = 0 take no observa-
tions and decide dy ; if Zy = 1 take no observations and decide d;, . In case ob-
servations are taken sampling continues until for some n,

ViV e T:Ao(n) U T:A4y(n).

If Vi e T:Ao(n) when sampling stops then decide dy ; if Vi & T:A;(n) when
sampling stops then decide d; .

In the sequel “ x ”” will mean Cartesian product Implied in the description of
the preceding paragraph is the assumption that if » = 1 and m = 1 then
(T:Ao(n) U T:A4:(n)) x R®™ is, as a set, disjoint from the set T:Ao(n + m)
UT:4,(n + m).

The following additional notation will be helpful in the analysis which follows.
The event that more than n observations are taken will be notated by
VY e T:C(n). Formally set wise we define T:C(0) = {2} and if n = 0,

T:C(n+ 1) = (T:C(n)) x R® — (.Lll0 T:A(n + 1)).

Then T:C(n + 1) &€ ®znqs . In the following we let Vy = {Z,, Xy, Zy, -+ -,
X.,Z., ---} which is a random variable taking values in infinite dimensional
Euclidian space R™. If m = 1 and 4 £ ®, then 4 x R“ is then a cylinder
Borel subset of R®™. If ¢ = 0, 1, define

r:4, = U ((T:4,5)) x B®)

so that if 2 = 0, 1, the events Ve T': A; are the events sampling stops and de-
cision d: is made. Finally, we let N, be the stopping variable for T

We now state our hypotheses on the probability density functions {po( ),
6 ¢ ©2}. We suppose there are given sequences of functions {¢, ,n = 1}, {h, ,n = 1}
and {gs,n ,n = 1, 6 £Q} such that if n = 1 then ¢, , k., and ¢, are measurable
functions,

tn:R™ — R, ha:R™ — R, and g¢o.:R — R.
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We suppose for all 0 Q,n = 1 and (1, -+ , 2,) ¢ R™ that

n

IIlpﬂ(xi) = qam(tn(xl y T x"))hn(xl y T xn)~
Besides assuming that the ¢, , n = 1, are sufficient statistics, we make an as-
sumption about monotone likelihood ratios. We suppose that if 6, = 6., 6,,
0:¢Q, and a; = a, then

90,,1(01)Q0, 2 (@2) = Qo,,2(@2) G0y n(a1), n = 1.

Finally, we require the family {ps(-), 6 £Q} to be a homogeneous family of
density functions. That is, if 4 ¢ ®;, 6@, and 0 = [, ps,(z)u(dz) then for
all9eQ, 0 = fA po(x)p(dr).

In terms of the hypotheses just made, we will call T a test with upper boundary
{b,,n = 1} if {b,, n = 1} is a real number sequence such that if

Vo = (20,%1,21, " ,Tn,2,) € T:A1(n)

then t, = t,(x1, -+, ) = b, while if v, T:C(n) U T:A4¢(n) then t, £ b, .
We use the notations “v,”” and ““t,”” throughout this section.

TaEOREM 3. Suppose 0 £ Q@ and that T is a test of the hypothesis 8 < 0 against the
alternative 0 > 0. We assume that if 0 %= O then Po(Nr < ) = 1. Thereexists a
test S with upper boundary such that

(a) f0 = 6,n =0, Po(VE” £ 8:C(n)) £ Po(VE e T:C(n)).

(b) if 8 = 0 then Py(VseS:A0) = Po(VeeT:Ag); of 8 = 0 then
Py(Vge S:Ay) = Po(VreT:Ay).

(¢) if 0 = 0 then Po(VgeS8:A1) = Po(VyeT:Ay); of 0 < 0 then
Py(Vse S:A)) < Py(VroeT:A)).

This theorem says nothing about Ps(Ns < «) if § < 0. It follows by (a)
that if § > 0 then Po(Ng < ) = 1 and by (b), (¢) that Po(Nr < ») =
Py(Ns < «). The test S is constructed using the following lemma.

LemMmA. Suppose T is a test of the hypothesis 6 < 0 against the alternative 6 > 0
such that if 0 ¢ Q and 6 5 0 then Po(Nr < ) = 1. Suppose 6o € Q. There exisst
a sequence of tests {T, , n = 0} having the properties described below. If n = 0 let
{Zin,t = 0} be the sequence of random variables associated with T, (used for ran-
domization). Then To = T.If0 < m = n,1=0,1,0 2 j = mandn = 0 then
Zim=Zjn,and Tn:Ai(7) = Tu:A:(7). In addition the following hold. Letn = 0.

(a1) If 6o < 0 and m = 1 then

Py(m = Ny, < @) = Py(m = Nr,,, < ®);

if 6 £ 0, the reverse inequality holds.
(by) If 6 < 6 and m = O then

Po(VE? & Tp:Ao(m)) < Po(Vim & Tuyaido(m));

if 0 = 6, and m = O the reverse inequality holds.
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(01) If0 = 6o then
Po(VTnS Tn:Al) = Pa(VTn-'.l & Tn+1:Al);
if @ < 0y the reverse inequality holds.

(di) If 6eQ, 8 = 0, then Po(Ng, < ) =
(e1) There is a real number sequence {b, ,n = 1} such that if n =2 1 and

{2, 21,21, ", Tn,2a} € TniAi(n) then
tn = tﬂ(xly e 7xn) ; bﬂ?
7'f {2’ T1y21, " 5 Tn, zn} & Tn:C(’n) U T,.:Ao(n) then t, < b, .

Proor oF THEOREM 3 FRoM THE LEmMA. Using this lemma the test S is de-
fined by S:4:(m) = Tm:di(m),s =0,1,m = 0,and {Z,,, ,n = 0} the random
variable sequence for S. We take 6, = 0 in applying the lemma. If the test T
satisfies the hypotheses of Theorem 3 then the following hold for S. It follows
immediately that

(az) if 0 = 6 and m = 0 then

Py(m £ Ng < ©) < Py(m £ Nz < o).

(by) if 8 = 0and m = 0 then

Po(VE € S:Ao(m)) = Po(VE™ € T:Ao(m));

if # 2 0 and m = 0 the reverse inequality holds.

From (a;) and hypothesis on T it follows that if § = O then Py(Ns < «) =
Py(Ny < ). Since P4(Nz < o) = Py(VyeT:A¢) + Po(Vze T:4,), using
(by) we obtain, if § = 0, Po(Vse S:4;) = Py(Vre T:A47). If 6 = 0 then by
Fatou’s lemma, and by (c;),

Py(VgeS8:4,) = Z lim infpe Po(VEP £ TpiAr(m))

m=0

lim inf,. Po( Vi, € ToiA;) £ Po(Vre TiA)).

Therefore the test S has the properties (a), (b) and (c) of Theorem 3.

Proor or THE LEMMA. T, has been defined. We suppose T»_: defined and

show the construction of T, . To carry out the construction we use the fact
that there is a sequence {¢, ,n = 1} of functions such thatifn = 1then¢,:R™ —,
R is a 1-1 onto measurable function such that ¢, is also measurable. See for
example Halmos [6]. The mappings {¢, , n = 1} allow us to take random vari-
ables Wy, ---, Wi and construct a random variable ¢x(W1, -+, W) without
loss of information. It is by such a process that the random variables {Z; ., , i > 1}
are defined.

As the first step of the construction we describe a test Tr . If0 £ m < 5 — 1,
Tua:C(m) = Th:C(m),andif 0 £ m < n,i = 0,1, Taa:di(m) = T, A(m)
Since {gs.., 02} have monotone likelihood ratios it follows that there is a
constant ¢, and a number p such that 0 < p < 1 and such that if we define

functions f;(-) and fo(-) by

lIA
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fl(o) = P0(NT,._1 =n, tn(Xl y Ty Xn) > C,,)
+ PPO(NT,,_l =n, tn(Xl y " Xﬂ) = cﬂ)
and f,(0) = Py(Vi?), & T\1:As(n)) then,

(25) if 62 60,f(0) = f(0); if 6= 6,f1(6) = f2(6).

Let Y, be a random variable which is independent of V&=, , m = 0, such that

P(Y,=1) = p=1— P(Y, = 0). Define T,:4:(n) as those points v, =
(20, 21,21, ", Tn, 2,) such that if ¢7'(2,) = (25 , y) then (20,21, 2, -,
Tn,2n) € TnaiAog(n) U Toy:As(n); and to(zy, -+, Tn) = 8y > €, 01,y = 1
and ¢, = ¢, . Define T, :Ao(n) as those points v, such that if ¢3 ' (2,) = (25 , y)
then (20, 1, 21, =+ 5 Zn, 25) € TagiAo(n) U Thy:4:(n); and ¢, < c¢,, or,
y=0andt, =c,.If m = n + 1then T, :4:(m) is to be the set of those v,, such
that (20, -+, n, Zn .y Tm, 2m) € TuyiAi(m), 1 = 0, 1, 2% as above. The
random variables associated with the test T, are to be Zo., -,
Znam, $2(Znny, Yn)y Znjam -+ . With these definitions it follows that for all
0eQ,ifm =0,m % n,7 = 0,1 then

Po(VE™ e ToyiAi(m)) = Po(VEP & ThiAi(m))

and if m = 0 then

(24)

Py(Nq,_, = m) = Po(Ng, = m).
Further, by (24),

f1(8) = Po(V5 & TuiAi(n));

f2(0) = Po(VE), & ToyiAs(n)).

From (25) we obtain the comparison of these probabilities.

We now define T, by redefining T, . Let r be a real number. Let s;(r) be the
set of those points v, such that t, > r, v, & Th:C(n), and s;(r) be the set of
those points v, such that ¢, < r, v, &€ T»:A:(n). It is necessary to consider three
cases.

Case 1.

SUP/ >, Py ( Ve esu(r)) = 0.

In this case we define b, = o ; Tp:do(n) = Uil Tn:Ad:i(n); TaiAi(n) = null
set. If m = 0,m = n,¢ = 0, 1, then T,:A;(m) = T»:A:(m).Since by hypothesis
{pe(-), 0 £ Q} is a homogeneous family of generalized density functions, it follows
that for all 6 £ Q, sup,s., Pe(V5: € si(r)) = 0. Therefore the redefinition does
not change the values of any probabilities associated with the tests.

Case I1. There is a number r = ¢, such that

Po, (VY e81(r)) = 0 = Po( VS e su(r)).

In Case II we define b, = r. T, is defined as follows. If £ = 0, 1,and 0 = m <
n — 1, then Th:4:(m) = Tn:A(m). T,:Ai(n) consists of those points v, in
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Tn:C(n) U Th:Ai(n) such that ¢, > b, together with those v, & Tn:A4:(n)
such that t, = b, . Th:Ao(n) = Ta:Ao(n). To:C(n) is the set of those v, such
that v, € Tn:C(n) U Th:Ai(n) and t, < b, together with those v, &€ T:C(n)
with £, = b, .

Ta:Ai(n + 1) = su(b,) x R® U Th:Ay(n + 1);
T.:Ao(n + 1) = ThiAo(n + 1).

If m = n + 2then To:4:(m) = Th:Ai(m), i = 0, 1. Since {ps(-), 09} isa
homogeneous family of generalized probability density functions the redefinition
of Case II does not change the values of any probabilities associated with the
tests.

Case II1. Define functions ¢:(-) and g2(-) on R by

91(r) = Poy(Vs¥ £5:(r)), and ga(r) = Po (Ve £51(r)).
In Case III there is a real number 7, such that g,(r) > 0 and g:(ro) > 0. Define
ba = sup {r | g1(r) = g2(r)}.
It is easily verified that b, < «. Define sets
D; = {0p | v € To:C(n), t, = by};
Dy = {vn | va & Ta:As(n), tn = by}.

We distinguish two subcases.
Case I11a. g1(b,) = g2(b,). Note that the functions g;(-) and gz(-) are mono-
tone functions. By definition of b, , if » > b, then g:(r) < gz(r). Therefore

91(bs) = lim,p,4 g1(7) < limyp,q go(r) = POo(V(”) & (sr(bn) U Di)).

Let Y, be a Bernoulli random variable such that Y, is independent of V(ﬁ),
m = 0, and such that

91(ba) = ga(bn) + Poy(V3: € Dir, Yo = 1),
Let sets be defined by
E; = s;(b,) x {0, 1}; E = s11(ba) x {0,1} U Dy x {1}.
Case IIIb. gi(b.) < g2(ba). It follows that ¢, < b, since g:(c,) = 0. Then
g2(ba) = limpas,— go(r) = limys,— gi(r) = Po(VEY € (s:(b,) U Dy)).

Let Y, be a Bernoulli random variable independent of V‘T’:{) if m = 0 and such
that

91(bn) + Py, (V5Y e D1, Yo = 1) = ga(ba).
Define sets by
E[ = Sl(bn) x {0, 1} U D; x {1}; En = Sll(b,,) X {0, l}.
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In Case III the set E; represents the event that T', continues when it “should”
stop, K the event T stops when it “should” continue. We will in the sequel
define T', accordingly. To do this we need to define a probability measure v on
®znqe by, if A &€ ®opqz, then

v(4) = Py, ((V3?, Ya) € AN E))/Po((V3Y, Ya) € En).

Let W, be a vector valued random variable taking values in R*"*?, and such

that W, induces the measure v on ®,,2 and W, has its range of values contained
in E;. We suppose W, is independent of Vi®, m = 0, and use W, to define
the continuation of T, in Case III. W, exists since it may be readily constructed
from the random variable (V5?, Y,).

We now construct the test 7, . If {Zﬁ,,. , 1 = 0} are the random variables

associated with T then in Case III define
Zi,n = Z;,n if ¢ # n; Zn,n = ¢’2n+4 (Z;.n, Yn ) Wn)
Further,if{ = 0,1,0 Sm < n — 1, Th:4; (m) = Ty:A; (m). Define T,:

A,(n) as those points v, such that
(Vnct » Tn , b2nsa(2a)) € {Br U [(Tn:ds(n)) x {0, 1} — En} x R,
define T,:Ao(n) = Tn:As(n), and T,:C(n) as the set of those v, such that
(Va1 , Tn , $2n+4(24)) € {Err U [(Th:C(n)) x {0,1} — E;} x R®*™.

Suppose then that m = n + 1. To establish the correspondences between
To:C(m) and Tr:C(m), Ta:Ao(m) and Tr:Ao(m), Ta:Ay(m) and Ty:Ai(m),
suppose C is a set in ®amy1, and C is the set constructed to correspond to C'.
Then C is the set of those v, such that if ¢zmia(2.) = (25, y, w) then
(Vn-1, Tu, 2a, Y) €Err and (W, Tas1, Zng1, - * 5 Tm, 2m) € C' together with
(Vnt, Zn, 20 ,y) € (Tu:C(n)) % {0,1} — Erand (Va_1,Tn,2n, ", Tm,2m) £
C’. Roughly speaking, if under T, the observed values fall in E;; then observe
W. = w and continue as if v, = w had been observed; otherwise T, and T, are
the same procedure.

As was observed in the discussion of Cases I and II the definitions of T’ in
these cases do not change any probabilities associated with the tests. Therefore
as T satisfies the conditions of the lemma the same is true of T, . We now de-
termine whether in Case III T, as defined satisfies the conditions of the lemma.

Let m = n + 1 and let the sets C &€ ®am41 and C” € Bzmya be as in the preceding
paragraph. Set

F = (T,:C(n)) x {0,1} — E;.
By the definition of the preceding paragraph,
Py(ViP eC) = Po((VE2,Y.) e F, Vi e )

(26) ( 4
+ Po((VT'}.); Yn) 'EEII, (W, Xn+l y * Zm) eC )



BEHAVIOR OF EXPECTED SAMPLE SIZE 53
Using assumptions made earlier of stochastic independence the last term of
(26) may be written as the product of two probabilities. We then obtain
Po(VEP eC) — Py(ViP ")
(27) = Py((V7Y, Y.) e Ext) Po((W, Xpa, -+ , Zm) £C)
- P,((V;';’, Y.) eEr, ViP e C').

Let w;(-) be the measure (Z,41, -+- , Z») induces on ®,,_, and write a condi-
tional probability

Po(Cll‘) = fxcl(' yLngl,y ** z,,.) H Po(ﬂh) H p(dx )wl(d2n+1, v ,dzm),

1-1‘

where x¢ is the characteristic function of the set C’ By definition of W, the
range of W, is contained in E; . Then

Po((Wn’Xn+17 ) M) 80) = EPO(C,IWn)
= L (I/A)PO(C'l(zO’ L1, **° 2%, y)) sI:Il Poo(xi)#(dxi)m(dzo y " dy)7

where A = P, ((V$?, Y,) € Er) and ws(-) is the measure on ®,,; induced by
(Zom, 3y Znm, Ya). Recall that {pe(-), 6 €9} is a homogeneous family of
generalized probability density functions so that the ratio gs,.(z)/gs,n(2) is
well defined for almost all z in the range of ¢, . By our hypothesis about monotone
likelihood ratios, if @ = 6y, goy.n(*)/Q.x(+) is a nonincreasing function. On the
set Er, ta(x1, -+, 2,) = tn = b, . We find

Po((Wn’Xn+l,"‘ )SC,)

= (gro.n(bn)/90.n(0a)) (1/A)Po((V3Y, Ya) € Er, V57 € C').
If 8 < 6, the inequality is reversed. By construction if 8 = 6, then
A = Py ((V7?, Y.) € Br) = Poy((V3?, Ya) € En)

2 (9052 (Dn) /20,0 (5a) ) Ps((V2y, Ya) € Err);

the inequality is reversed if 6 < 6,. From (27), (28) and (29) it follows that
ifmz=n-+1,

(28)

(29)

if § = 6 then P (VP £C) = Py(V5? e C');
(30) if 8 < 6 the inequality is reversed.
We specialize (30) to the cases of interest and obtain
ifm =n -+ 1and 6 = 6, then
(31) Py(Vi? & To:C(m)) < Po(VEP € Tn:C(m))
= Py(Vi? & TosiC(m)).
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Similarly,

ifm=n-+1and 8 = 6 then
32) Py(V,) € TaAo(m)) < Po(VE? € Thido(m))
= Py(Vi?, & Toa:Ao(m)).

If 6 = 6, then inequalities (31) and (32) reverse.
By construction, if 6 £ @,
Po(VED £ ToiAg(n)) = Po(VEY € Tn:Ao(n)).
Then if 6 = 6, ,
Py(VEY & Tr:Ao(n)) < Po(VE), € TariAo(n)).
The inequality reverses if 6, = 0. If 6 £ @ then
Py(VEY & T,:C(n)) — Po(Vs? & Tn:C(n))
= P((V3?, Vo) € Ex) — Po((VE?, Ya) € Ei),

By an argument like the one used to obtain (28) and (29) it may be shown
that this difference is <0 if 6 = 6, and is =0 if 6 =< 6, . Since if 0 € Q,

Py(VEM &€ Toy:C(n)) = Py(VEY € Tr:C(n)),

jt follows that (a;) and (b;) of the lemma are satisfied.
To verify (c1) observe that if 6 = 6, then by (a;)

Po(Vr,_, € Taa:Ao) + Po(Vr,_, € Tuaidy)
S Po(Vug, € TatAo) + Po(Vr, € ThtAy).
If & = 6, then using (33) and (b,) gives
0 < Py(Vr,_, € Taa:Ao) — Po(Vr, € Trh:Ao)
S Py(Va, € TatAr) — Po(Vie,_, € Tt 4y).
The reverse inequalities hold if 8 =< 6, .
To verify (d.),
Py(Ny, < ©) — Py(Ny;, < @)
= Py((V$?, Y2) € Er) — Po((VEY, Y2) € En)
+ 3 PV, V) & B, (W Xt o+, 20)

m=n+1

(33)

1 .

(34) ‘ ¥ ‘90 T,,:A;(m))
00 1

— > P ((V‘,?, Y.) e Br, Vi e Uo T:.:A.-(m))

m=n+1 1=l

0 1

5 PR, ¥ e B Py (W, -, 2) ¢ U Toidatm))

m=n+1

— Ps((V$Y, Y,) € Euwr).

v
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Define f(-) by the following. Take 6, € @, 6; # 0. Let

00

1
f(w) =m_”Z+l P"‘(.-g) Tn:Ad(m) | w).
Then it is clear that f(-) is a measurable function on R**® and that
00 1
Ef(Wﬂ) = E Pol((Wﬂ y " Zm) € U T;:At(m))-
m=n+1 =0

We show that Ef(W,) = 1. Then from (34) it will follow that if 8 0, Ps(Nr,
< ®) 2 Py(Ng < ») = 1. That would complete the proof of the lemma.

To show Ef(W,) = 1, let xg be the characteristic function of the set E;.
Then

E’l(XEI(V;:)’ Y, )f(V;':)’ Y.))
_Pol((VT”)Y)eEI)n+1 —NT" < w) = Pol((V;:),Y)SEI)

Therefore, if 8 = 0 for almost all (v, , y) € Er, f(v», y) = 1. By construction
the distribution of W, is the same as the distribution (V{%, Y,) restricted to
E; and normalized when 6 = 6, . Since {ps(-), 0 £ @} is a homogeneous family
of generalized probability density functions it follows that f(W,) = 1 with
probability one and therefore Ef(W,) = 1.

3.2 Tests with an upper boundary. The family {h(8) exp (6z), 6 £ @} of general-
ized probability density functions on (R, ®,, u) satisfies the hypotheses for
Theorem 3. The functions £,(21, -+, Zn) = &1+ --+ + 2, n = 1. Conse-
quently given a test T of the hypothesis § < O against the alternative 6 > 0
for the problem of Section 1 there is, by the results of Section 3.1, a test T}
with upper boundary {b, , n = 1} such that if N, is the stopping variable for
T, and if 6 > O then EyN; < EpN. If Ny = n and 6 > 0 is decided then S, =

X:+ -+ + X, = b, while if N; = n and 8 > 0 is not the decision made then
S, = b We now state and prove a series of lemmas about tests T with upper
boundary {b, ,n = 1} and stopping variable N; . {X. ,n = 1} will be a sequence
of independently and identically distributed random variables each with gen-
eralized probability density function h(0) exp (6x) for some 8 ¢ 2. We assume
0e9Q, o = 0 (see (2)) and that 6 < 0 against 8 > 0 are the hypotheses being
tested. In the following we will use the notation s, = 1 4+ -+ + 2,7 = 1.
LemMma 1. If T, is a test with upper boundary {b, , n = 1} and stopping variable

N, andz'fPo(Nl < 00) < 1 then
(35) litysee ba/mt = .

Proor. Assume the contrary. Then there is a constant C > 0 and an integer
sequence {n:, 7z = 1} such that if ¢ = 1 then b,, < C(n:)}. By the central

limit theorem
lim infi.e Po(Sa; > bs;) = lim infise Po(Sa; > C(n)?) > 0.
By the Borel-Cantelli lemma,
Py(8n; > bn, for infinitely many z = 1) > 0,
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and therefore
Po(8Ss > b, for infinitely many n = 1) > 0.
By Lévy [9], Section 45, it follows that
Py(8S, > b, infinitely often) =
By definition of a test with upper boundary, N; = « impliesif n = 1, S, <

b, . Therefore Py(N; < ) = 1. Contradiction. Therefore (35) follows.
LemMMA 2. Suppose Ty is a test with upper boundary {b, , n = 1} and stopping

variable Ny . If for all 6 > 0, Py(Ny; < ) = 1 and if

(36) ap = lim infy,o_ Ps(N;1 < o, decide 6 > 0),
B: = lim infs,o4 Ps(Ny < w0, decide § < 0),

and if az + B2 < 1, then

(37) lim inf,. b,/n = 0.

Proor. It was shown in Section 1, (7) and (8), that
Py(N; < o) S ap+ B < 1.

By Lemma 1 it follows there is an integer no such that if n = n, then b, > 0.
Therefore lim inf,., b,/n = 0. We will show below that if lim inf,.e bu/n =
6 > 0 then P(y(N, < =, decide 6 > 0) is a continuous function at the origin.
It follows that

Bg = lim info.,o+ Pg(Nl < @, decide 6 < 0)
= 1 — lim supg.os Ps(N1 < o, decide 6 > 0) =1 — a.

The first part follows since if 6 > 0 sampling stops with probability one and a
decision is made; the second part follows from the assumed continuity. This
contradiction shows that § = 0 and completes the proof.

Assume then that & > 0. Let 8, > 0 be chosen so that p;, < 8. Let e
be given. By the strong law of large numbers there is an integer N(e)
such that

>0
=1

P;s,(some n = N(e), Su = ba) < €/4.

It may be shown using the methods of Lehmann [8] that P, (some n = N(e),
S, = b,) is a nondecreasing function of 8. Therefore,

if 8 < 6, Ps(somen = N(e), S, = b,) < ¢/4.

Since the event N; = n, decide 6 > 0, implies the event S, = b, , it follows
that

if 6 ¢ QPy(somen = N(e), Su = bs) = Poy(N1 = N(e), decide § > 0).
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Let
do,(8) = |Py(N1 < o, decide 6 > 0) — Py, (N1 < o, decide 6 > 0)].

Since P(,(N; < N(e), decide 6 > 0) is a continuous function of 6, it follows
that if 8, < &, then lim sups.s, ds,(8) < /2. This holds for all ¢ > 0. Therefore
continuity is proven.

LemMma 3. If T, is a test with upper boundary {b, ,n = 1} and stopping variable
N1, and if Po(N1 < ») < 1 then
(38) limg,o_ Ps(N; < o, decide 6 > 0) = Po(N, < «, decide § > 0).

Proor. If m = 1, S, is a sufficient statistic for the joint distributions of
Xy, -+, Xn.It follows that there is a sequence {y= , m = 1} of Baire functions
such that if m = 1,

yu(Sn) = P(Ni = m, decide § > 0| Xy + -+ + Xn) ace. .

Since S, is a sufficient statistic this conditional probability does not depend on
0. If S, < by then y(Sm) = Oa.e. Let

d.(0) = Po(N, = n, decide 6 > 0) = fh(ﬂ)"'yn(sn) exp(6s,) ﬁp(dxi).

Then

(39) %dn(ﬂ) = f ((nk’(8)/h(8)) + $.)h(8) v (sn) exp(6s,) _Hl'ﬁ(dx,-).

By Lemma 1, there is an integer n, such that if n = n; then b, > 0. If § < 0
then R'(0)/h(8) = —p = 0. Except for a set of measure zero yam(sm) > 0

implies $m = b . Therefore if m = 71, Ym(sm) > 0 implies s, > 0 (except
for a set of measure zero). If follows that if 8 < 0 and n = n; then (39) is
nonnegative, and therefore that Z:.L,.l d.(0) is a nondecreasing function of
0 <0, 6¢Q. Since each function d,(:) is nonnegative and continuous the

sum E:=n1 d.(0) is a lower semi-continuous function. Therefore

i d,(0) = lim sups-o— i d.(0) = i d.(0).

n=nj n=nj n=ny

Since Py(N = 0, decide 6 > 0) + > L' d,(6) is continuous in 6 the lemma
follows.

LemMa 4. Let T, be a test with upper boundary {b, , n = 1} and stopping vari-
able Np such that Po(N: < ) < 1. Let ny be the least integer =1 such that if
n = n then b, > 0. There exists a real number sequence {c. , n = 1} satisfying,

(40) ifn = n, then c,,+1‘_S_ en £ bo/no’; liMpaw ¢n = 0 and lim,., nle, = co.
Let 0 < p < 1. If {0, , n = 1} s any real number sequence satisfying

for some no , if n = no then 0 < 0, < pc, , then
(41) limg.e Po, (N1 = n, decide 6 > 0) = 0;

lim, . Py, (N1 < n, decide 6 > 0) = Po(N1 < o, decide 6 > 0).
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Let
(42) B = lim sups.o4 Ps(Ny < o, decide § < 0).
Then
(43) lim inf, .o Py, (n = N, < =, decide 8 > 0) ,
21— B — Py(N: < o, decide 6§ > 0).

Proor. By Lemma 1, lim,.. b, = «. Therefore the integer n, exists. Further
this implies that lim inf, . b,/7 = 0. If lim inf, .. b,/n > 0 it is trivial to write a
sequence satisfying (40). If lim inf,.. b,/n = O then a sequence {c., n = 1}
may be defined as follows.

(44) Cn = Milg <iga b.'/idz, . nzmn.

It follows at once that {c,, » = n} is a nonincreasing sequence that decreases
to a limit of zero, and that if n = n, then¢, < ba/nd’.

Define a function g(-) by if m = n,, g(m) = micn . In the trivial case we
have at once that lim,., g(m) = «. In the case that the sequence {c, ,n = n,}
is defined by (44) we prove that lim,.. g(m) = « as follows. Let {m., 7 = 1}
be the sequence such that if 7 = 1 then miy1 > m: = 1, and cm; = b, Jmid.
Then by Lemma 1, limi,, g(m:) = ©. If m; = m < m;y; then cm = Cm;
and g(m) = mlcm, = micm;, = g(m:). Therefore limm.., g(m) = o.

Therefore sequences {c, , n = n,} satisfying (40) always exist. In the follow-
ing g(-) is always defined by

L}

(45) if m=mn then g(m) = m'cn.
Then
(46) limm.e g(m) = .

To prove Lemma 4 we define a function k(-) on the positive integers such
that k(- ) has the following properties.

limyp,e Cny/Cn = ®; limp.w k(n)le, = o}
(47) limg.w Ps, (k(n) < N1 = n, decide § > 0) = 0;
lim,. Ps, (N1 = k(n), decide 6 > 0) = Py(N, < o, decide 6§ > 0).

Since 6, > 0, p > 0, it follows that Py (N; < ) = 1 and therefore that
Py, (N; < o, decide 6§ > 0) = 1 — Py, (N1 < », decide § < 0). It follows
that

lim infp.e Ps,(n = N1 < , decide § > 0)
= 1 — lim supy.. Py, (N1 < «, decide 8 < 0)
— lim sups.« Ps,(N1 < n, decide 6 > 0)
1 — B, — Py(N; < =, decide 6 > 0).

(48)

(%
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The last step in (48) follows from the definition (42) and from (47). Thus (43)
is verified.

We now define the function k(-). Let {a,, n = 1} be a sequence of positive
real numbers satisfying if n 2 1, app1 S @ ; limy,e ap = 0; liMpaw ang(n) =
. Let n = n; and define
(49) k(n) = the greatest integer m such that cm/c. = amg(m),

k(n) = 0ifforall m = ny, cm/cn < amg(m).

Since 0 = liMp.w Cm/Cn < liMp.w amg(m) = o it follows that if n = m
then k(n) is finite. Note that ¢m/Chy1 = Cm/casothatk(n + 1) = k(n),n = n,.

Since lim,. €m/cn = o, if n is large enough, k(n) > m. Therefore
(50) if n=2n, k(n+1) = k(n); limy.e k(n) = .

By definition cimy/cn = axmg(k(n)). Since lim,.. k(n) = « it follows
that lim.. Ck@my/Cn = ®©. Again by definition,

Ckm+1/Cn = armyg(k(n) + 1)

armlk(n) + ll;ck(n)+1 .

Therefore
1/ owmn = calk(n) + 1]§~

This implies lim, . c,.[k(n)]’ = oo, Thus the first part of (47) is verified.

We now prove lim,.. P, (k(n) < N1 = n, decide § > 0) = 0. We change
the notation of Section 3.1 slightly and let T:4,(m) be the event N, = m,
decide 6 > 0. Let {ym, m = 1} be the sequence of Baire functions specified in
the proof of Lemma 3.

If0 <p<1 then Pu(Ti:di(m))
= [ W0 ym(m) o0/ (0))"

- exp ((p — 1)6s,) exp (6sn) I:Il u (dz;).

(51)

Using the approximation (23) to h(6),
(h(p0)/h(8))™ exp ((p — 1)08m)
= exp {mbo’(1 — p)[6((p + 1)/2 + 0(8)) — sm/(ma")}}.

Let no be as in (41). Since O(8) — 0 as # — 0, and since (p + 1}/2 < 1, we
may choose an integer n, = max (no, 71) such that if 0 < 6 < 1/n. then
(p+1)/2+4+0(6) < € <1 and if ¢ = k(ny) then 6; < ¢; < 1/ng . Then if
m £ n and if m = n, on the event T1:A;:(m),

(53) Sm/ (M) = bm/(M6”) = Cm = Cn-

(52)
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Therefore from (51) and (52)
Py (Ti:A1(m)) £ Po,(Ti:Ai(m)) exp {meno’(1 — p) (¢ — 1)}
= P.,(T1:Ay(m)) exp {—mcro’(1 — p)(1 — €')}
Then from (54) it follows that
P, (k(n) < N1 £ n, decide 6 > 0)

(54)

(55) < k(Z;HP%(TI:Al(i)) exp {—icho’(1 — p)(1 — €)}
< MAXkm<ign €Xp {—icho’ (1 — p)(1 — ¢)}
< exp {—k(n)ckd’(1 — p)(1 — €)}.

By (47) it follows that lim, . k(n)ci = . Therefore

(56) if0<p<l, lim, . Pye,(k(n) < Ny < n, decide § > 0) = 0.

We now evaluate lim,.c. P,,(N1 < k(n), decide 6 > 0). Near zero P(,(T;:
Ai(m)) is a convex function. We show this by computing the second derivative
and showing that it is positive. The second derivative is

(57) [ 26, m, 5)h(0)"a(sm) exp () IT w (a2,
where

L(6 m
PR ZCAOES

= m(h(6)h”(6) — (K'(8))*)/(h(8))" + (mh'(6)/h(8) + sm)™.

A calculation using the quadratic formula shows that L(6, m, s,) = 0 if
(59)  sm/m* = {[(K(8))" — h(O)R"(8))/(R(8))"} — m'R(8)/h(6).

From the relations (19) to (23) we may compute

limg.o (1/h(8))[(R'(6))* — R(O)R"(0)] = o;

limg.o — h'(6)/6h(6) = o".

Let € > 0 be chosen so small that p(1 4+ ¢) < 1. Choose 6(¢) > 0 so small that
(61) if 0 =< 6 < 6(e) then (1/h(8))[(R'(8))* — h(B)R"(8)} < 24°;

— K(8)/h(8) < (1 + €)0.

Then from (59) a sufficient condition that L(8, m, sm) = 01is if 6 < 6(e) then
sm/mt = 20° + mP(1 + €)6.
On the events T;:A;(m) we have

(62) Sm/m} = bp/m}.

(60)
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Therefore from Lemma 1 it follows that liMm.e Sm/m! = . Choose ns = n,
such that
ki

(63) if m =n; then 20° 4+ mle*(1 + €)pcm < Mmoo .
This is possible since by (40), lim . miem = , while by choice p(1 + ¢) < 1.
Then,
(64) if m = ng, 0 < pcm, 6 < 6(e), then L(6,m,s.) = 0.
This holds since by (62) and (63)
Sm/m} = bu/mt = micPen = 2068 + mo*(1 + €)pem = 26" + ma’(1 + €)6.

Choose n4(p, €) = ns so that if m = ny and if § < pc, then 8 < 6(e).- Then

on the interval [0, pc,] the function P.,(ns < Ny < n*, decide § > 0) °

65 . . = .
(65) is a convex function for every n* satisfying n, < 2* < n.

This assertion is correct since

(66) Po(ns < Ny £ n*, decide 8 > 0) = D Po(Ti:A1(m)).

- m=n,4
. . * *
Sinceif ny, =m =n,n = mn,

(67) 0 = pc, = pCnr = PCm

and 6 < 6(e) follows. Therefore by (64) the term P(y(T;:A:(m)) is a convex
function on the interval [0, pc.].
The first derivative of P(y(T1:4:1(n)) is

(68) f (nh'(8)/h(6) + 82)h(8)"¥x(s) exp (6s,) I:Il u (dz;)

which is positive for those 6 = 0 such that
(69) Su/1 = ba/n = o'cn = —H(0)/h(8) = p = 0.

Therefore if e and 8(e) are as above so that p(1 + ¢) < 1then —&'(8)/h(8) =<
(1 + €)6.
Iftm = ny, 0 < pc,, and n = m, then

(70) 2 2 ’

sm/m = 0Cm =0 (1 “+ E)Pcn = —h (0)/h(0)
Therefore
(71) if ns < n* < mand0 =< 0= pc, then Piy(ns < Ny < 0¥, decide

6 > 0) is a nondecreasing function on the indicated interval.

We may now complete the proof of Lemma 4. Choose n; such that n; = n,
and if n = n; then ¢, < ¢y - Let d;,, and d., be nonnegative numbers with
din + do,n = 1 satisfying
(72) dan = Cn/Ckimy -

o
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Then if n = n; it follows that dz, = 1. Further if n = 7 then k(n) < n and

from (65) it follows that if ny < k(n)
P, (ny £ Ni £ k(n), decide 6 > 0)
< d1,.Po(ny £ N, £ k(n), decide § > 0)
+ denProy(ny(ns = N1 £ k(n), decide 6 > 0)

= Py(ny = Ny < k(n), decide 6 > 0) + (¢o/Ckmy)-

(73)

Therefore using (47)
lim supy-w Poe,(ns = N1 £ k(n), decide 6 > 0)
=< Po(ny = N1 < =, decide 6 > 0).

(74

By (71) and the choice of 4, on the interval [0, pcim)] the function Py(ny <
N; £ k(n), decide 6 > 0) is nondecreasing. Then

Po(ny £ Ny < o, decide § > 0)
= lim,., Po(nsa = Ny = k(n), decide 6 > 0)
= lim inf, . Py, (ns = N1 = k(n), decide 6 > 0)

=< lim sup,-w Ps, (s = N1 < k(n), decide 6 > 0)

< lim sup,.w P, (ns = N1 < k(n), decide 6 > 0)
= Py(ns £ N1 < =, decide § > 0).

Since limy.w Ps, (N1 < n4, decide § > 0) = Po(N;, < ng, decide 6 > 0), it
follows that limg.. Ps (N1 = k(n), decide 8 > 0) = Po(N, < », decide
8 > 0). Using (56) it follows that lim,.. P, (N1 = n, decide § > 0) = Py(N,
< o, decide 6§ > 0). Using (71) and repeating the argument of (75) we find
that if n = ne implies 6, < pc, then lim,.. P, (N1 = n, decide 6 > 0) =
Py(N; < o, decide 8 > 0). That completes the proof of Lemma 4.

LemmMa 5. Suppose Ty s a test with upper boundary {b, , n = 1} and stopping
variable N1 . Suppose there is an integer ng such that if n = ne then bpya = by .
If n = n, (see the statement of Lemma 4) define ¢, = Ming <i<n b/ (e%). If
Py(N; < ©) < 1 and #f lim inf,.. b./n = O then

(75)

(76) lim SUPnow (n¢4)/(n log (log 7))} = (1/0)2%

Proor. Let L = lim Suppaw (nc,)/(n log (log n)):. If L = o there is nothing
to prove. We consider only the case L is finite. We will then show that denial
of the conclusion of the lemma leads to the conclusion that Py(N; < «) = 1.
The later parts of the argument below will be very much like proofs of the law
of the iterated logarithm. It will first be necessary to obtain more information
about the possible spacing of values in the sequence {b,, n = 1}.

Let my = n; and if ¢ = 1, let miy; be the least integer m such that m > m;



BEHAVIOR OF EXPECTED SAMPLE SIZE 63

and o’cn = bn/m. Let ¢ = my = ny and if ¢ > 1, ¢ = mi/mi_;. The first
step of the proof is to show that if L < <« then

(77) limio (git1)}/log (log m:) = 0.
The function g( -) defined in (45) satisfies
(78) g(m.-)(mi)g = bm/0‘2.

If n = ng it follows from the definitions of ns , of the sequence {c,, n = n},
and of the sequence {m., ¢ = 1}, that if m: = n = ne

b 11 = bmiyy s bm;/mi = (b, 1)/ (Miga — 1);
(79) mipn £ 1+ (mMi/bm)bm; 2 = 1+ (Mif/bm; )om,,,
=1+ g(m.-m)(m;mm)*/g(m;).
Let an integer n; = 7 be so chosen that if » = n; and m; = n; then
(80) ne, < 2L(nlog (logn))'s  mia < 2g(misa) (mamisa)*/g(ms).

Square the first half of (80), set » = m:41, and substitute the second half of
(80) to obtain, if m; = n; then

miga(g(minn))? = mlpch,,, < 4L(2g(mop) (mamasr)}/g(ms))
-log (log [2g(m.~+1)(m,-m,-“)*/g(m.-)]);
log (log (2g(mss) (mamiis)}/g(ms)))
= (g(m:)g(mita)/(8L)) (miss/ms)}
= (g(m:)g(misr)/8L%) (gisn)*.

Taking exponentials of both sides and using the fact that log (mamip)? =
log m: + (3) log ¢:11 we obtain

log (2(mi41)/g(ms)) + log m: + log (gi41)*
= exp ((g(m,-)g(m,~+1)/8L2) (Q-’+1)*)‘

v

Therefore
log (mi(gi)?) Z exp ((g(m:)g(mis)/8LY) ((gia)! + 0(1)));
llog (log (mi(gis1)}) N/ (gi41)} = (g(mi)g(misn) /8L (1 + o(1)).

Since lim..., g(m:) = o it follows that (77) must hold.

It follows that there is an integer ng = n; such that if ¢ = ng then for some
i>0,31 =m; £ (i+ 1)!/(logi). Forlet nf = 3landn; = (¢ + 1)!/(log1).
Then

limi.., (log (log n¥)) ™ (ni/n¥)? = limi.. (log (log i) ~'[(¢ + 1)/(log ©)]! = «.

Choose ng so large that if ¢ = ns then (log (log n¥)) ™ (ni/n¥)* = 2 while if
1 = ng then (log (log m,-))‘l(qm)* = (log (log m;))—l(mm/m;)% < 1. This is
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possible by virtue of (77). Then if j = ng it is impossible that m; < 7! and
mjp > (2 + 1)!(log ©)~". We assume below that {mi, s = 1} is a subsequence
of {m:, 7 = 1} such that if ¢ = ng then ¢! < mi < (5 + 1)!(log 7).

We now prove

lim SUPisew bm; (m: log (log m:)) ™t = 2%
Suppose to the contrary that for some 0 < ¢ < 1 that
1im SUP:se b, (m: log (log m:)) ™ < eo2’.

We use arguments similar to those of Lévy [9] to show Po(S. > b, infinitely
often) = 1. This will contradict the hypothesis that Py(N; < «) < 1. It is
sufficient to show that with probability one S.; > b infinitely often. Since
the random variable X; has moments of all orders the law of the iterated loga-
rithm applies to {X, ,n = 1}. If € > 02! then with probability one for all large
values of n, S, > —¢ (n log (log n))*. Therefore it is sufficient to show that
with probability one,

Suipy — Smp > bup,, + € (milog (log mi))*

for infinitely many . Since lim,,., (mi/miy) = 0,if 1 > ¢” > ¢ we may choose
Ny so large that if ¢ = ny then

bmiy + € (milog (log mi))! < €”o2}(m41 log (log mis))".
Therefore it is sufficient to show that with probability one, for infinitely many 7,
Sy — Smi = €02 (mi1 log (log mip))t.

By virtue of the Borel zero-one.criterion it is sufficient to show
(81) 2 Po(Smiyy — St 2 €02 (m! 11 log (log min))")
=1

is a divergent series. Since X; has a finite third moment there is a constant d > 0
such that for every n = 1,

SUP—crcio |Po(Su/ (on') = N) — [ (1/(2r)") exp (—2*/2) doj< d/n'.

See for example Esseen [2]. Since Z'}Ll (miy — mi)™? < », to prove the
series (81) divergent it suffices to treat {X, ,n = 1} as if they were independent
normal 0, ¢° random variables. Recalling that if i = ng then ¢! < mi £ (5 + 1)!
(log )", and that f§° (1/(2#)%) exp (—2°/2)dx is asymptotically (1/
A2m)? exp (—A)/2) as A — «, a standard calculation shows that the series in
question diverges. That completes the proof of Lemma 5.

Lemma 6. Suppose T is a test with upper boundary {b, , n = 1} and stopping
variable Ny . Let € > 0. There exists a test Ty with upper boundary {d. , n = 1}
and stopping variable Ny and an integer m such that

(a) ifn = 1lthend, =< b, ;

(b) ifn = mthen dnyy = dn
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(¢) if N» = m and Sy, > dw, then sampling stops and the decision 6 > 0 is
made.

(d) N2 = N,.

(e) if 0, Po(Ny < o, decide 8 < 0) < Pyo(N; < oo, decide § < 0).

(f) Po(Ny < o, decide 6 > 0) < Py(N, < », decide 0 > 0) + e.

Proor. Let p = inf,5; Po(X; + -+ + X, > 0). Since E,X; = 0and o > 0,
if n = 1 then Py(8S, > 0) > 0. By the central limit theorem lim,., Po(S,/
nt > 0) = }. Therefore p >0. We define n;, to be the least integer such that
Py(np = N1 < ©0) < ep.

Define a set of integers A by n ¢ A if and only if

(82) n=ng; b,>0; ifm=nthenb, = b,.

Since lim,., b, = o, it follows that A is an infinite.set. Suppose 4 = {m.,
1 = 1} with the enumeration so chosen that if 7 = 1 then m.y; = m;.

Define {d, ,n = 1} as follows. If n < my,d, = by ;if ¢ =2 1land m: <n =
m; 11 then d, = bm;,, . It follows that if n > m; then d,i1 = dn. We define
m = m, to satisfy (b) of the lemma.

To verify (a) observe that if m; < j < m:y; and b; < bm,,, then there is a
largest integer j' < m.; such that b =< by, +1 - This implies 7 & A contradict-
ing the definition of A and the enumeration {m;, ¢ = 1}. Therefore if m: < j <
miy1 it follows that b; > bn,,, = d;. Since b, = dm; , 2 = 1, while if n = m
then b, = d., (a) now follows.

We now define the decision rules for the test T . Let T::A¢(n) be the event
that N; = n and 6 < 0 is decided by 7', where N, is the stopping variable for
the test T, 7 =0, 1. Let T;:A;(n) be the event that N; = n and 6 > 0 is
decided, 1 =0, 1. If 0 =n =<=m, 1 =0, 1, then Ty:4:n) = Ti:4:(n).
If n > m; then T2:A:(n) is defined as follows. If N, = n,b, > d,,and S, = d,
then N, = n and 8 > 0 is decided; if N, = n, b, = d,. ,and S, = d, then sam-
pling stops and 6 > 0 is decided if and only if N; = » and using 77, 8 > 0 is
decided. T.:Ao(n) is defined as follows. If Ny = n, b, > d,, S, < d, and
Ti:Ao(n) then To:Ao(n); if No =2 n, b, = d,, S, = d, and Ti:44(n) then
Ty:Ao(n). In all other cases No = n + 1.

We now verify (d) of Lemma 6. In the event N; = n and T;:4,(n) then
S, =b,=2d,.If Ny =n = N, then by the definitions of the preceding para-
graph, if b, > d, it follows that N, = n; if b, = d, then since S, = d, and
T::Ai(n) it follows Np = n. In the event N; = n and Ti:Ao(n) then S, = b, ;
if N, = n = N;and b, > d, then it follows that N; = n;if b, = d, then S, =
d, follows and N, = n follows. Therefore N; = n, N, = n implies N; = n =
N; . That proves (d).

We now verify (¢). We have defined m = m; . If N, = n > mand S, > d,
then there are two cases. If b, = d, then S, > b,, and since n = N, < N;
it follows that N, = n, T):A:(n) holds, and therefore from the definition of
T, that T.:A;(n) holds; if b, > d, then it follows at once from the definitions
that Ty: A:(n) holds.

We verify (e). If N, = n and 8 < 0 is decided and b, > d, then according
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to the construction S, < d,, N1 = n and Ty:Ao(n). If b, = d, then according
to the construction S, = d,, N1 = n, and T1:A¢(n). Thus the event T5: A¢(n)
implies the event T::Aq(n).

We verify (f). Observe that

Po(Nz < o, Tz:A]_) =< Po(Nl < ©, T1:A1) + Po(m]_ < Nz < ©, T2:A1).
If n £ A then since N; = N, it follows that

(83) Po(Nz = n, Tz:Al) = Po(Nz =n, m < N; < 00).
If n = mand n g A let 2 = L be the least integer such that n 4+ 7 ¢ A. Then

(81) pPy(Ny = n, T2: A1) £ Po(Xn1 + -+ + Xngi > 0)Po(N2 = n, Te:44)
< Py(Na= n,m < N; < o).
Summing the inequalities (83) and (84) gives

(85) Py(m < Ny < o, Ty:A;) £ (1/p)Po(m < N1 < )

< (1/p)(pe) = e

That completes the proof of (f) and of Lemma 6.

Lemma 7. Suppose T is a test with upper boundary {b, , n = 1} and stopping
variable Ny such that Po(N1 < ) < 1 and im infyon ba/n = 0. Let {ca,n = 1}
be defined as for Lemma 5. Then

(86) lim SUPnw n¢a/ (7 log (log n))t = 24/0.

Proor. Let ¢ be so small that Po(N; < ) + ¢ < 1. Let T; be a test with
upper boundary {d., n = 1} and stopping variable N, such that T’ satisfies
the conclusions of Lemma 6 in relation to T , ¢, m. It follows that

Po(Ny < ) £ Py(N, < o, decide § < 0) + Po(N; < oo,
decide 6 > 0) + e = Py(N: < ) + e < 1.
By Lemma 1, lim, .. d./n' = . Therefore
0 < lim inf,.s ds/n = lim inf,,, b,/n = 0.

Let ny be the least integer such that if n = ny then d, > 0. Define & number
sequence by ¢, = (1/¢°) min,,, <i<s di/i. By Lemma 5,

(87) Jim Supa.w (ncy )/ (n log (log n))t = 2/0.
Let m12 = ny; be the least integer n such that b,/n = o¢, . Then if n = Nz,

(88) Cn = minnngign bi/(7:0'2) = m.in,," <izgn de/('l:a'2) = C:, .

The proof of Lemma 7 is completed by using (87) and (88) together.

3.3 Proof of Theorem 1 per se. Let T be a test of the hypothesis 6 < 0 against
the alternative § > 0 with stopping variable N. We define a test T as follows.
Let N be the stopping variable for 7; . Then N = N, . If N; = n then T} always



BEHAVIOR OF EXPECTED SAMPLE SIZE 67
decides § > 0. By Theorem 3 there is a test S with upper boundary {b, , n
such that
if 8 > 0 then EyNs < EyN,,
Py(N, < ©) = Po(Ns < ) and Ps(Ns < ) = 1.

Here, N, is the stopping variable of S. Using the test S the decision § < 0 is
never made. By Lemma 1, lim, . ba/nt = . By Lemma 3

limg.o— Ps(Ns < o, decide 8 > 0) = Po(Ns < «, decide 6 > 0).

Since Py(Ns < o, decide § < 0) = 0 for all 6 ¢ @, and since Py(Ns < ») < 1,
we may use Lemma 2 to obtain lim inf,., b,/n = 0. If we define n, as for Lemma
4 and {c, ,n = n,} as for Lemma 5 then by Lemma 4,if 0 < p < 1,

limyse Poe,(n < Ng < ©) =1 — liMy,e Ppe,(Ns < 1)
= 1 — limgse Poe,(Ns < n, decide 8 > 0)
=1 — Py(Ns < =, decide 6§ > 0)
=1— Py(Ns < o) = Py(Ng = ©) = P(N = ).

By Lemma 7, lim sup,.. (nc.)/(n log (log 7)) = 27/ Let 0 < ¢ < 2'/0 and
{ms', 7 = 1} be an integer sequence such that

(micm;)/(m:log (log m:))! = (2Y/0) — e

Let {6:,7 = 1} be a real number sequence such that if = 1then 0 < 6; = cm,
and

v

1

(mi6.)/(m. log (log m))* = (2!/) — e

Inversion of this equality shows that

m: = ((2"/a) — €)*(1 + o(1))67* log (log|6,|™)).
Since 0 < 6; < ¢€m, , by Lemma 4 it follows that

lim; e Pog;(m; < Ng < ©) = Py(Ns = o) = Py(N = ).
By construction E,g,N = E,,Ng = m:Pn;(m;: < Ng < «). Therefore
(06:)"loglloglob | "EaN 2 p'((2"/0) — &)*(1 + o(1)) Py (m: < N5 < ).
It follows that
lim sup:... (p6:)"loglloglodil|| "B N = 0'((2/c) — ¢)*Py(N = ).

Since p < 1 and e > 0 are arbitrary and since limg.o us/8 = o, it follows that

lim supe_o4 us|loglloglus||| "EsN = 26°Po(N = ).

We now prove the last statement of Theorem 1. To prove limg.o4 0’EN =
suppose the contrary. Then there exists a sequence {0, , m Z 1}, such that if
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mi1 S Om , and such that lim.e 0, = 0, lim SUPm.e. 02E,, N < .
= 1} and {g:, ¢ = 1} be integer sequences such that if ; = 1 then

PCm; = 04 = pCm;41. It follows that lim.., m}6,, = o by the definition of

{ea,n = 1}.

By Lemma 4,

limi e Pog,(m: < Ns < @) = Py(Ns = @) = Py(N = =) > 0.
Also
Ey N = Ep,,Ns = m:iPy,,(m: < Ns < ).
Since limi., m:f;;, = o it follows that lim;. o:,.quiN = . Contradiction.

In order to complete the proof of Theorem 1 it is necessary to show the con-
struction of certain generalized sequential probability ratio tests. In the sequel
we will use the following notation: log, x = log (log z), logs = log (log (log
z)). Let 0 < @, 0 < B, and @ + B < 1. We will show that there is a GSPRT
with stopping variable N for the problem stated in Section 1 such that

limg_o 15 (logelus| ™) "EsN = 26°(1 — a — B).

~ To actually construct the test we use the law of the iterated logarithm. It
has been proven by Cantelli [1] that if { X, ,» = 1} is a sequence of independently
and identically distributed random variables such that E|X,[* < « and if ¢ > 3
then the sequence

{2} (n(logs (n + €) + clogs (n + €%)))}, n = 1}
is in the upper class for the sequence {X, ,n = 1}. We write n + eand n + ¢° so

that the quantities will be defined if » = 0. Given ¢ > 3 we may pick an integer
n13 S0 large that

Po(some n = ms +1, |S.] = o2 (n(loge (n + €) + (clogs(n + €))))

< min («a, B).

We may pick a;, b; for 1 < 7 < my; and define if n > n;; then —a, = b, =

02" (n(logs (n + €) + clogs (n + ¢°)))? and introduce appropriate randomiza-
tion so that the choices be made to satisfy

Py(N < ) = o+ 8, P(N < =, decide § > 0) = ¢,
Py(N < «,decide § < 0) = 8.

We will assume below that randomization is used only in the cases .X; = a; or
X, = b, it being possible to choose {a, ,n = 1} and {b,, n = 1} in this way.
We suppose then N = 2 and Sy = by means that sampling stopped and 6 > 0
was decided; N = 2 and Sy < ay means that sampling stopped and 8 < 0 was
decided. N > 0and b; > S; > a:,1 £ 7= n — 1 means N = n. Finally we may
suppose that Po(N = 0) = 0.

1t follows at once from the strong law of large numbers that if 6 % 0 then
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Py(N < o) = 1. Further, as noted in Section 1, P,(N < «, decide 6 > 0) is
a left continuous and nondecreasing function. It follows that sups<o Ps(N < o,
decide 6 > 0) < a. Similarly P(,(N < «, decide § < 0) is a right continuous
and nonincreasing function, and it follows that supeso Ps(N < o, decide
9 <0) < B

We will show first that for the GSPRT just defined

(89) lim infy. 6°[log[log|6||| " EsN = (2/6*)Po(N = ).

To do this we use the fact that P.y(N =< n, decide § > 0) is a nondecreasing
function. Consequently if 0 < p < 1 and {6, ,n = 1} is a real number sequence
such that if n = 1 then pc, < 6, < pc,_y, where {c, , n = 1} is defined as for
Lemma, 5, then

P, (N < n,decide 8 > 0) £ Py, (N < n, decide 8 > 0)
< P, (N <n — 1,decide 8 > 0) + P, ,(N = n — 1, decide § > 0).
It follows from one step in the proof of Lemma 4 that
lim,,e Py, (N = n, decide § > 0) = 0.
Therefore by Lemma 4,
(90) lim,., Ps,(N < m, decide 8 > 0) = Po(N < o, decide 6 > 0).

Also, since Py(N < o, decide 8 < 0) is a right continuous and nonincreasing
function,

(91) limg.., Ps, (N < o, decide 8 < 0) = Po(N < o, decide § < 0).
Since
1 = Py (N < n,decide § > 0) + Py,(n = N < o, decide 6 > 0)
+ Py, (N < =, decide § < 0),
using (90), and (91), and taking a limit on » in (92) gives
limye Ps,(n = N < o, decide 6 > 0) = Po(N = ).

From the definition of the upper boundary {b,, n = 1} for the GSPRT being
considered it is easily verified that there is an integer n;4 such that if n = nyy then
¢, = b,/n, that is,

(92)

(93) ne. = (2'/0)(n(logs (n + ) + clogs (n + €))%
As observed above inversion of the equality (93) gives
(94) n = ((2/6") + o(1))ca" logs lea| .

If pc. < 6, < pc.1 then by considering only the event N = n, decide 6 > 0,
which means the upper boundary is crossed, we find from (94)

(95) Eo N = (2/0" + 0(1))c," loge |c,.|_1Pon(n < N < «, decide 6§ > 0).



70 R. H. FARRELL

It follows from the assumption that 6, = pc, together with (95) that

(96) lim infyo4 0°(logz |6 ) "EN = (2/0")p’Po(N = o).
Since p < 1 is now arbitrary,
(97) lim infs.04 6°(logs |6] ) EN = (2/6")Po(N = ).

The case 6 < 0, treated by similar arguments, together with (97) complete
the proof of (89).

We will obtain an upper bound on E;N using an identity due to Wald [11].
According to this identity,

(98) wEsN = EpSx .

Since Sy = Sy_1 + X~ and since Sy_; < by_1, we will obtain the required upper
bound by finding an upper bound to E;|Xx|, and an upper bound to EeSy_i .
If we apply the identity due to Wald [11] mentioned above to X4+ -+ X2
then we find

Eo| Xy < (Bo(X: + -+ + X3))} = (B XIEN).
We may therefore find a constant K such that if —1 < 6 < 1 then
(99) Eo|Xy| £ K(EN)*.
Let f(-) be a positive real valued function satisfying
(100) limg.o f(8) = «, and limg.o 6%(6) = 0.
From (98) we obtain
wEeN = Eo|Xn| 4+ Po(N < f(6))Eo(Sx— | N = £(6))

+ Py(N > f(6))Eeo(Sn-1 | N > £(6)).

Since Po(N = ) > 0 it follows from (89) that, using the upper bound (99),
and the fact that limg.o pe/6 = o,

(101) E0|XN| = O(MoEoN).

Similarly, since if N = n then |S,| < max (a., b.) = b, when n = ny, it
follows that £s(|Sv_i||N = f(0)) = o(ueEeN). Therefore

(102) wEeN < o(uEeN) + Po(N > f(8))Es(g(N)| N > f(6)).
Here we define the function g(-) by
g(z) = o2} (z(log; (x + €) + clogs (z + )L

There is an integer n;5 such that on the interval [n;s , ) the function g( - ) is con-
cave. Using Jensen’s inequality on (102) and setting y(8) = EoN | N > f(6))
we find

(103) wEsN = o(mEsN) + Po(N > f(8))g(y(6)).
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But EsN = y(0)Ps(N > f(0)) so that from (103) follows

(104) (1 + o(1))uay(0) = g(y(6)).

Inversion of this inequality gives

(105) y(6) = (20" + o(1))ui” loge |l .

From (100) it follows that

(106) limao s Eo(N | N < £(8)) < limano (u0/0)"6%(8) = 0.

From (105) and (106) it follows that

(107)  lim supe.o w4 (log |uel ™) "EN = 20"limesor Po(N > f(6)).
It follows from Lemma 4 that

(108) limg,o4 Po(N > f(0)) = Po(N = ).

To see this let ns = the least integer = f(0). We may without loss of generality
suppose f( - ) is a strictly increasing function and therefore have that 8 < ™ (n,).
Since limg.o 6°/(8) = 0 it follows that lim,., 2z’ () = 0. We may therefore
find an integer n;s such that if ns = 7,6 then f~'(ng) < pc,, - It follows that there
isa 8 > O such that if 0 < 8 < § then
(109) 0<6=7"(n) = pca, -
Then
Pyo(N < my,decide 6 > 0) = Po(N < ng, decide 6 > 0)

= Py, (N < m, decide 6 > 0).
By Lemma 4 it follows that
(110) limy.o4 Ps(N < ng, decide 8 > 0) = Po(N < o, decide § > 0).
Also if ny = n then

Py(N < my,decide 6 < 0) = Py(N < ng, decide 8 < 0)
= Py(N < n, decide 8 < 0).

Therefore taking a limit on 6,
Py(N < o, decide 6 < 0) = lim supg,os Po(N < mg, decide 8 < 0)

= lim infg.04 Ps(N < ng, decide 8 < 0) = Po(N < m, decide 8 < 0).
Since this holds for every n = 1 it follows that

limyo4 Po(N < my, decide 8 < 0)

= Py(N < o, decide § < 0).

(110) and (111) together imply that (108) must hold.
The proof is completed by a similar argument for § < 0.

(111)
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