THE EMPIRICAL BAYES APPROACH TO STATISTICAL
DECISION PROBLEMS!

By HerBERT ROBBINS
Columbia University

1. Introduction. The empirical Bayes approach to statistical decision problems
is applicable when the same decision problem presents itself repeatedly and in-

dependently with a fixed but unknown a prior: distribution of the parameter. .

Not all decision problems in practice come to us imbedded in such a sequence,
but when they do the empirical Bayes approach offers certain advantages over
any approach which ignores the fact that the parameter is itself a random vari-
able, as well as over any approach which assumes a personal or a conventional
distribution of the parameter not subject to change with experience. My own
interest in the empirical Bayes approach was renewed by recent work
of E. Samuel [10], [11] and J. Neyman [6], to both of whom I am very much
indebted. In keeping with the purpose of the Rietz Lecture I shall not confine
myself to presenting new results and shall try to make the argument explicit
at the risk of being tedious. In the current controversy between the Bayesian
school and their opponents it is obvious that any theory of statistical inference
will find itself in and out of fashion as the winds of doctrine blow. Here, then,
are some remarks and references for further reading which I hope will interest
my audience in thinking the matter through for themselves. Considerations of
space have confined mention of the non-parametric case, and of the closely
related ‘“‘compound’’ approach in which no a prior: distribution of the parameter
is assumed, to the references at the end of the article.

2. The empirical Bayes decision problem. We begin by stating the kind of
statistical decision problem with which we shall be concerned. This comprises

(a) A parameter space A with generic element A. A is the “state of nature”
which is unknown to us.

(b) An action space A with generic element a.

(¢) A loss function L(a, N\) = O representing the loss we incur in taking action
a when the parameter is \. ‘

(d) An a prior: distribution G of X on A. G may or may not be known to us.

(e) An observable random variable x belonging to a space X on which a o-finite
measure u is defined. When the parameter is A, z has a specified probability
density f\ with respect to u.

The problem is to choose a decision function ¢, defined on X and with values in
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2 HERBERT ROBBINS

A, such that when we observe x we shall take the action ¢(z) and thereby incur
the loss L(¢(z), \). For any ¢ the expected loss when X is the parameter is

(1) RGN = [ L), V) du(a),

and hence the overall expected loss when the a prior: distribution of A is G is
@) RG,6) = [ RGN a6,

called the Bayes risk of t relative to G. We can write

3) R, G) = [ 4o(t(2), 2) du(a),

where we have set i

(@) 4o(a,2) = [ La, Vi) 4GV,

To avoid needless complication we shall assume that there exists a decision
function (d.f.) t¢ such that for a.e. (u) =,

(5) ¢¢(te(), ) = min,g de(a, ).

Then for any df. ¢

(6) Rito,6) = [ min. do(a, 2) dus) S R(4, G,
so that, defining

(7) R(@) = Rlta, &) = [ palto(2), ) dula),
we have

(8) R(G) = min; R(¢, G).

Any d.f. te satisfying (5) minimizes the Bayes risk relative to G, and is called a
Bayes d.f. relative to G. The functional R defined by (7) is called the Bayes
envelope functional of G. When G is known we can use ¢ and thereby incur the
minimum possible Bayes risk B(G).

There remains the problem of what to do when G is not known. To extreme
Bayesians and extreme non-Bayesians this question will be empty, since to the
former G will always be known, by introspection or otherwise, and to the latter
G will not even exist. We shall, however, take the position that G exists, so that
R(t, @) is an appropriate criterion for the performance of any d.f. ¢, but that G
is not known, and therefore tg is not directly available to us.

Suppose now that the decision problem just described occurs repeatedly and inde-
pendently, with the same unknown G throughout (for examples see [6]). Thus let

(9) (>‘1 ’ xl)) (Az ’ x2)’
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be a sequence of pairs of random variables, each pair being independent of all
the other pairs, the A, having a common a prior: distribution G on A, and the
conditional distribution of x, given that A, = X being specified by the probability
density f . At the time when the decision about A.41 is to be made we have ob-
served @, - -, Tny1 (the values M, Az, - -+ remaining always unknown). We
can therefore use for the decision about A,4; a function of x,41 whose form depends
UPON Ty, ** , T ; 1.€. a function

(10) tn(') =tn(xly"':xn;')’

so that we shall take the action #,(z.41) € A and thereby incur the loss
L(t.(£n41), M41)- Our reason for doing this instead of using a fixed d.f. #(-)
for each n (as might seem reasonable, since the successive problems are inde-
pendent and have the same structure) is that we hope for large n to be able to
extract some information about G from the values 2y, - - - , z, which have been
observed, hopefully in such a way that ¢,(-) will be close to the optimal but un-
known (- ) which we would use throughout if we knew G.

We therefore define an “empirical” or “adaptive’ decision procedure to be a
sequence T' = {t,} of functions of the form (10) with values in 4. For a given T,
the expected loss on the decision about A1, gtven z;, - - - , &, will be (cf. (3))

(11) [ #ott(@), ) du(2),
X
and hence the overall expected loss will be
(12) RuT,G) = [ Bpo(ta(z),2) du(),

where E denotes expectation with respect to the n independent random variables
Ty, - , 2, which have the common density with respect to u on X given by

(13) fol@) = [ (@) 6,

the symbol z in (12) playing the role of a dummy variable of integration and not
a random variable. From (5) and (12) it follows that always

(14) R.(T, G) =z R(G).
DerinITION. If
(15) lim,.. B.(T, G) = R(G)

we say that T is asymplotically optimal (a.0.) relative to G.

We now ask whether we can find a 7 which is in some sense “as good as
possible”’ for large n relative to some class G of a prior¢ distributions which we are
willing to assume contains the true G. In particular, can we find a T which is a.o.
relative to every G in G? (G may be the class of all possible distributions on A.)
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3. Some generalities on asymptotic optimality. Comparing (2.7) and (2.12)
we see by Lebesgue’s theorem on dominated convergence that for T = {t,} to be
a.o. relative to a @ it suffices that

(A) limy,, Ede(tn(z), ) = ¢a(te(), z) (a.e. (u) 2),

and
(B) Boolta(a),2) < H@)alln), where [ H(z) du(z) < =,

The main problem is (A); we shall summarily dispose of (B) by assuming
that

(©) [ Lo a6t < =,
A

where we have set
(1) 0 =< L(\) =sup, L(a,\) = «.
Then setting
(2) H(z) = [ LOOA@) d60) 2 0,
we have by (2.4) for any T,
(3) $a(tu(z), z) = H(z) (all n),
and by (C),

@ [ B du) = [ 10) [ 1) due) a600) = [ L0 a60) < =,
and (3) and (4) imply that (B) holds. Moreover, from (4) it follows that
(5) : H(z) < » (ae. (u)z)
and hence to prove that (A) holds it will suffice to prove that

(D) P lims.e ¢a(la(2), ) = ¢a(le(z), ) (ae. (w)2),

where by p lim we mean limit in probability. Hence (C) and (D) suffice to en-
sure that T is a.o. relative to G.
Let ao be an arbitrary fixed element of A and define

(6) Aola, @) = fA [L(g,\) — L(ao, MAi(z) dGN)
and

) Lo(z) = f L(a, MAi(2) dGOV),
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so that under (C) we have, for a.e. (u) =,

(8) da(a, ) = Lo(z) + Ad(a, z).
Suppose we can find a sequence of functions

(9) Au(a, ) = Au(@1, ", Tn 5 @, T)
such that for a.e. (u) z,

(10) p lim,., sup. |Az(a, ) — A¢(a, z)| = 0.

Let ¢, be any sequence of constants tending to 0 and set (subject to measurability
conditions)

(11) to(x) = to(1, -+ ,2n ;) = anyelement ageAd
such that A,(d, z) =< inf, A.(a, ) + € . Then by (2‘.5) and (8),
0 = As(ta(z), ) — As(ta(z), x)
[Ae(ta(x), ) — An(ta(z), 2)] + [Aa(ta(z), ) — An(ta(2), 7)]
+ [An(ta(2), ) — Ada(te(z), )]

Given any ¢ > 0 we have by (10) that for large n with probability as near 1
as we please the right hand side of (12) will be =€ + e + ¢; thus

(13) p limy.e Ag(ta(), ) = Ae(te(2), ) (ae. (w)2),

which by (8) implies (D). We have therefore proved -

TuEOREM 1. Let G be such that (C) holds, let A,(a, x) be a sequence of functions
of the form (9) and such that (10) holds, and define T = {t,} by (11). Then T is
a.0. relative to G.

When A is fintte this yields

COROLLARY 1. Let A = {ao, - - - , an} be a finile set, let G be such that

1A

(12)

(14) fAL<a,-,x> dGO) < (=0, ,m),

and let A;,(x) = Aip(21, - -, Zn;2)fori=1,--- , mandn = 1,2, --- be
such that for a.e. (u) x,

(15)  plimeohia(z) = [ [L(as,)) = Llao, V(@) dGON).

Set Ao o(z) = 0 and define
t.(z) = ax, where k is any integer 0 = k < m such that
Apa(z) = min [0, Aja(2), <<+, Ap ()]

Then T = {ta} is a.0. relative to G.
In the important case m = 1 (hypothesis testing) this becomes

(16)
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COROLLARY 2. Let A = {ao, a1}, let G be such that

(17) [ 1@, a60) < = (i = 0,1),

and let Ay(x) = An(x1, -+, Ty 3 x) be such that for a.e. (u) z,

(18) p limn.e Aa(2) = B0(2) = [ [La,3) = Llao, MIA(2) dGO).

Define
t(z) = a0, if Aau(z) 20,

19
(19) =aqa, if A.(z) <O0.

Then T = {t.} is a.o. relative to G.
We proceed to give an example in which a sequence A,(z) satisfying (18) can

be constructed.

4. The Poisson case. We consider the problem of testing a one-sided null
hypothesis Hy : A\ < A* concerning the value of a Poisson parameter A. Thus let
A={0< X< o}, A = {ay, a1}, where ap = “accept Hy’, &, = “‘reject Hy”
and

X =1{0,1,2,---1}, u = counting measure on X,

fi(z) = e\ /zl.

It remains to specify the loss functions L(a. , \) ; we shall take them to be

(1)

L(ag,\) =0 if A <2
=x—2\* if A=
(2) . . .
La;,\) = A* =2 if A=\
=0 if A= a%

Thus (very conveniently)
(3) L(ai,\) — L(ap,\) = \* —\ (0 <\ < ),

and

(4) A(x)—f[L(a A) — L(ao, MIA( NS
o(@) = | [L(a, 0) xiB)dGO\)—/‘; O =N S G0,

Now by (2.13),
(5) fo(z) = Pla; = 2) = f

o 6_)‘>\z
x!

dG(n),

so that we can write

(6) Ag(x) = Nfo(z) — (2 + Dfe(z + 1).
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Define
) 8(x, y) = %f T =y,
=0 if z#y,

and consider the expression

(8) Un(T) = Un(@1y oo+, Tn ;) =N jﬁ;&(x, z;).

Noting that

(9) Es(z, z;) = P(z; = z) = fo(),

it follows from the law of large numbers that

(10) P limn.e Ua(2) = fo(x) (z=0,1,---),

and hence that, setting

(11) An(z) = Nua(z) — (z + Dua(z + 1),

we have forx =0, 1, ---

(12) P limasw An(z) = Ne(z) — (x + 1)fe(z + 1) = Ag(2).

Setting

(13) to(z) = a0 if ANuu(z) — (2 + Dua(z + 1) 2 0,
=@ otherwise,

it follows from Corollary 2 of Section 3 that T s a.o. relative to every G such that

(14) f NGO\ < .
0
We remark that we could equally well have defined u,(x) to be
n+1
(15) ua(z) = [1/(n + 1)] Zl@(x, z;),
=

since (10) holds as well for (15) as for (8). Using (15) the corresponding T
would require us to take action ap on A, if and only if

* (. + 1)(number of terms z;, - -+, 2, equal to z, + 1)
(16) "2 .
(number of terms z;, - -, x, equal to z,)

For the problem of point estimation with squared error loss it was shown by
M. V. Johns, Jr. [2] that the right hand side of (16) is in fact an a.o. point
estimator of A, for every G such that

(17) f'" N dG(\) < .
0
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The much easier result of the present section on hypothesis testing uses a loss
structure (2) suggested by Johns in [4].

The relation (6) was basic to our construction (11) of a sequence A,(z) satis-
fying (3.18); now, (6) is a special property of the Poisson distribution (1) and
the loss structure (2), and therefore it might seem that the application of Corol-
lary 2 to empirical Bayes hypothesis testing would be very limited. Such is not
the case. The application of Corollary 2 to more general loss structures, and
to many of the most common discrete and continuous parametric distributions
of statistics is discussed in [4], [9], [11]. Instead of giving a review of these results
here, we shall consider a case in which no asymptotically optimal T exists but
the empirical Bayes approach is still useful.

5. An example in which asymptotic optimality does not exist but all is not lost.
Let z be a random variable with only two values, 0 and 1, with respective
probabilities 1 — A and A, the unknown parameter A lying in the interval
A = {0 = A £ 1}. On the basis of a single observation of x we want to estimate
\; if our estimate isa ¢ A = {0 = a = 1} the loss will be taken to be L(a, ) =
(A — a)’. A df. tis determined by the two constants ¢(0), (1) which are at our
disposal on the unit interval A ; the expected loss in using ¢ for a given A is

R(t,\) = (1 = M) (A = #0))" + A(A — (1))
= £(0) + [£'(1) — 2¢(0) — £(O) + [1 — 2¢(1) + 2L(O)I\’.
Consider the particular family of d.f.’s ¢, defined for 0 < « < 1 by setting

(2) ta(0) = 3o,  ta(1) = §(1 + @).
It is easily seen from (1) that
(3) R(ta,\) = e’ + (1 — 2a))].
For o = 1 we shall denote ¢, by t*, so that
(4) 0) =% (1) =% R@EN) =454
For any a prior: distribution @ of X let
(5) v = 5(@) = fol X dG(N) (i =1,2).

Then from (1) it follows that for any d.f. ¢,

Apart from the trivial cases in which » = 0 or 1 we have after some simple
algebra the formula

R(t, G) = (Vl —_ Vz)(llz - V%)/Vl(l - Vl)
+ (1 = w)[K0) — (m — »)/(1 — »)I’ + nlt(1) — w/nl’,
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from which it follows that for a given G, R({, @) is minimized uniquely by the
Bayes d.f. {s for which

(8) te(0) = (m — »)/(1 — n), te(1) = wo/m,
with
(9) R(G) = R(ta, G) = (V1 - Vz)(Vz —_ V%)/Vl(]. _ Vl).

Each ¢, (and in particular t*) is a Bayes d.f.; it suffices to find a distribution of
A such that

(10) (m=m)/(I —wn) =30, w/n=~10+a)a,

and this is provided e.g. by the distribution G, with the density

(11) [B(a, 1 — a)] A1 — A)4707

for which

(12) = a vy = 3a(l + a), R(G.) = }a(l — a).
The fact that t* is the Bayes d.f. relative to G; and that for any G,

(13) R(,6) = [ RN d60) = s

has the important consequence that

(14) supg B(t, @) > & for every t = t*.

For if for some ¢, supg R(#', G) < &, then in particular

(15) % = R(&, &) S R({,Gy) = 1,

so that

(16) R(f,Gy) = R(t", Gy) = &

and therefore { = t*. Thus t* is the unique “minimax” d.f. in the sense that st
minimizes the maximum Bayes risk relative to the class of all a priori distributions
G'. When nothing is known about @ it is therefore not unreasonable (the avoidance
of a direct endorsement of any decision function is customary in the literature)
to use t*; the Bayes risk will then be 7% irrespective of G, while for any ¢ = t*
the Bayes risk will be >+ for some G (in particular for any G with » = 3,
ve = $;e8 Gy).

For any 0 < a < 1 let G, denote the class of all G such that »(G) = «. For
any @ in G, (in particular for G,) we see from (2) and (7) after a little algebra

that
(17) R(la, @) = ta(l — @) (G € Ga)
irrespective of the value of ».(@). It therefore follows as above that

(18) SUpgeg, B(t, G) > %a(l — ) for every  # t,,
S
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so that relative to the class G., {. is the unique minimax d.f. in the sense that
1t minimizes the maximum Bayes risk relative to the class G. . If nothing is known
about G except that »(G) = a it is therefore not unreasonable to use ¢, ; the
Bayes risk will then be a(1 -— «), while for any other d.f. the Bayes risk will
be >%a(l — a) for some G in G, (in particular for any G with » = a,
vy = 3a(l + a);e.g. Go).

It follows from the above (or can be verified directly) that

(19) (m—m)(n—m)/ml —n) £ in(l —n) < &;

equality holding respectively when »» = 3»(1 + ») and when » = 1.

Suppose now that we confront this decision problem repeatedly with an un-
’known G. The sequence z, , 73, - - - is an independent and identically distributed
sequence of (’s and 1’s with

(20) P(z;=1) = fl)\dG(A) =n(@), Px:i=0)=1—nQ);

thus the distribution of the z: depends only on »(@). Since t¢ , defined by (8),
involves ».(G) as well, it follows that no T can be a.o. relative to every @ in a
class G unless », is a function of » in G, which is not likely to be the case in

practice.
On the other hand, let

(21) = (1) 3z,

and consider the decision procedure T = {¢,} with
(22) £a(0) = 3Un, ta(1) = 3(1 + ua).

For any G in G., by the law of large numbers, 4, — « and hence ¢, — t, with
probability 1 asn — «. In fact, since

(23) Ex; = o = Ex}, Varz; = a(l — a),
it follows that
(24) Eu, = a, Bui = Varu, + o’ = a(1 — a)/n + o
and hence from (6) that
R.(T, @)

(25) = ERul + of2(1 + 2up + ul) — un — 2ud) + (1 — 1 — up + )]
= 1B} — 2u, + o] = 2a(1 — &)[1 + 1/n] = R(te, @)[1 + 1/n].

Thus for large n we will do almost as well by using T as we could do if we knew
n(G) = a and used . . We have in fact for G ¢ Ga,

(26) Ro(T, @) — R(ta, @) = a(l — a)/4n < 1/16n,
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while
R.(T, @) — R(f*, @) = a(1 — a&)(n + 1)/4n — &
= —[(1 — 22) + a(l — a)/4n.

This example illustrates the fact that even when an a.o. T does not exist, or
when it does exist but R,(T, @) is too slowly convergent to R(G), it may be
worthwhile to use a T which is at least “asymptotically subminimax.”” R. Cogburn
has work in progress in this direction for the case in which z has a general binomial
distribution (for which see also [9] and [11]). The general problem of finding
“good” T’s has hardly been touched, and efforts along this line should yield
interesting and useful results.

6. Estimating the a priori distribution: the general case. Returning to the
general formulation of Sections 2 and 3 and confining ourselves for simplicity to
the case A = {ao, a1} and A = {— o < X\ < o}, we recall that an a.o. T exists
relative to the class G defined by (3.17) whenever we can find a sequence A,(z) =
An(z1, *+ -, Zo 5 ) such that for a.e. (u)z,

(27)

(1) pliMn,w A,(2) = Ag(z) = [: [L(a1,N) — L(as, N1fa(z) dG(\)

for every G in G. One way to construct such a sequence (not the one used in
Section 4) is to find a sequence G,(A) = Gu.(2;, -+ - z, ; \) of random distribu-
tion functions in A such that

(2) Pllimg.. G.(A) = G(\) at every continuity point A of G] = 1.

If we have such a sequence G, of random estimators of G then we can set
3) M) = [ L@, ) = Lao, VIi(2) dGalM);

if for a.e. (u) fixed z the function
(4) [L(a, N) — L(ao, MIfx(z)

is continuous and bounded in A, then the Helly-Bray theorem guarantees (1).

We shall now describe one method—a special case of the “minimum distance”
method of J. Wolfowitz—for constructing a particular sequence G,(\) of random
estimators of an unknown G, and then prove a theorem which ensures that under
appropriate conditions on the family f\(x) the relation (2) will hold for any G
whatever.

In doing this we shall relax the condition that the distribution of z for given
\ is given in terms of a density f, with respect to a measure u, and instead assume
only that for every Ae A = {— o < A < =}, Fa(z) is a specified distribution
function in z, and for every fixed ze X = {— o < z < o}, Fy(z) is a Borel
measurable function of X\. (A function F(z) defined for — o < z < o« will be
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called a distribution function if ¥ is non-decreasing, continuous on the right, and
lim.,— F(z) = 0, lim,., F(z) = 1.)
For any distribution function G' of A we define

(5) Fo@) = [ B(@) d6(0);

then F¢ is a distribution function in z.
Let 21, a2, -+ - be a sequence of independent random variables with Fg as

their common distribution function, and define

(6) Bu(x) = Ba(x1, -+ , 24 ;2) = (no.of termsz, , - - - , 2, which are < z)/n.
For any two distribution functions F; , F. define the distance

(7) p(F1, Fy) = sup, |Fi(z) — Fa(z),

and let e, be any sequence of constants tending to 0.
Let G be any class of distribution functions in A which contains @, and define

(8) d, = infésg P(Bn ) Ft'i)'
Let G.(A\) = Gu(z1, -+, 2. ; A) be any element of G such that
(9) P(Bn y FG,,) _S_ dn + €n .

We say that the sequence G, so defined is effective for G if (2) holds for every G
in G. We now state

THEOREM 2. Assume that

(A) For every fixed z, F\(z) is a continuous function of .

(B) The limits F_o(z) = limr._o Fr(z), Fo(x) = limn.., Fr(z) exist for

every x. ,
(C) Neither F_, nor F., is a distribution function.
(D) If Gi, Gy are any two distribution functions in \ such that Fs, = Fo,

then G, = G,.
Then the sequence G, defined by (9) s effective for the class G of all distribution

Sfunctions in .
Proor. By the Glivenko-Cantelli theorem,

(10) Pllim,., p(B, ,F¢) = 0] = 1.
Since

(11 p(Fe,, Fe) = p(Fa,, B.) + p(Bu, Fa)
Sdit e+ 0(Ba, Fo) = p(Bn, Fo) + e + p(Ba, Fo),

it follows from (10) that with probability 1 the sequence z; , 2, - - - is such that

(12) lim,..o [ " F(2) dGa(\) = [ " F(z) dG(\)  (uniformly in z).

4
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Now consider any fixed sequence ;, x5, - - - such that (12) holds and let G,
be any subsequence of @, such that Gy,(A\) — G*()) at every continuity point
A of G*, where G* is a distribution function in the weak sense, 0 < G (—w),
G*(») = 1. By a simple extension of the Helly-Bray theorem it follows from
(A) and (B) that for every =z,

limae [ Fa(@) 46,0 = [: Fa(z) dG*(\)

+ G*(— @ )F_o(z) + [1 — G*(=)]Fu(),
and hence from (12) that for every z,

(14) [ 7@ a60) = [ ma) a6t

F G*(— 0 )F_n(z) + [1 — G*()]Fu().

If we can show that G*(— ) = 0and G*(®) = 1 then it will follow from (D)
that G = G*, and hence, since G* denoted the weak limit of any convergent sub-
sequence of @, , that (2) holds. We shall complete the proof of the theorem by
showing that (C) implies that @*(—®) = 0 and G*() = 1.

Since F_, is the limit as A — — o of ‘Fy, it is a nondecreasing function of z
such that

(15) 0= F o(—»), Fo(=w)=1,

and similarly for F,, . Let  — — « in (14). By Lebesgue’s theorem of bounded
convergence,

(16) 0 =G (—o)Fu(—2) + I — G (0)Fu(—).

Hence if G*(— o) = 1 then F_(— ) = 0, and if G*() 5 1 then Fo,(— =)
= 0. Similarly, by letting # — « in (14) we see that if G*(—®) = 0 then
F_o(®) = 1,and if G*(®) 5 1 then F,(») = 1. Suppose now that a, is any
sequence of constants converging to a limit a from the right. Then from (14),
putting 2 = a, , letting n — o, and subtracting (14) for z = a, we see that

G*(— ) [F-o(a + 0) — F_u(a))
+ [1 — G*()][Fu(a + 0) — Fuo(a)] = 0.

Hence if G*(— =) = 0 then F_o(a + 0) = F_,(a), and if G*(») 5 1 then
Fo(a + 0) = F.(a). It follows that if G*(— ©) 0 then F_, is a distribution
function and if G*(») 1 then F, is a distribution function. Hence by (C),
G*(— ) = 0and G*(») = 1. This completes the proof.

ExampLE 1. (location parameter) Let F be a continuous distribution function
(e.g., the normal distribution function) with a characteristic function which
never vanishes,

(18) or(t) = f_w e dF(z) # 0 (all ).

(13)

(17)
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Set Fa(z) = F(z — \); then (A), (B), (C) hold. If Gy , G, are any two distribu-
tion functions such that Fg, = Fg, ;i.e., such that

(19) [P - aao) = [ Fa = aen (all ),
then

(20) or(D)da, (1) = ¢r(t)de,(t) (all ),
and hence

(21) $6,(t) = g,(1) (all 2),

so that G; = (. Hence (D) holds, and by Theorem 1 the sequence @, defined
by (9) is effective for the class G of all distributions G of A.

When the parameter space A is not the whole line, the statement
and proof of Theorem 2 can be appropriately modified. As an example, suppose
A = {0 = X < »}. Then we can prove in exactly the same way as for Theorem 2

THEOREM 3. Assume that

(A) As in Theorem 2.

(B) The limit Fo(x) = limy.o, Fi(x) exists for every z.

(C) Fy is not a distribution function.

(D) If G1, Gz are any two distribution functions in \ which assign unit probability
to A =1{0 =\ < o} such that

[ m@ a60) = [ R@ o) (all 2),
A A

thszﬁ== G&.
Then the sequence G, defined by (9) is effective for the class G of all distributions
which assign unit probability to A.

ExampLE 2. (Poisson parameter) Let

Fo(z) =0 forz < 0,
(22)
=1 forz = 0,
and for 0 < A < « let
(23) Frz) = D e™\/il
0<i<z
Then (A), (B), and (C) hold.
Let G ¢G; then
(24) Folz) = [ @) de0) = X [ 56 a6,
A 0<i<z JA
where
fo(z) =1 forz = 0,
(25) =0 fori = 1,2, -

@) = e/ fori=0,1,---and0 <\ < .
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Now
Fo0) = [ 7:(0) a6
(26)
Foln) = Foln = 1) = [ A(0) d60) (0 = 1,2,--2),
so if Fg, = Fg, then
(27) [3m) a0 = [am) ae0) =01,

Define the set functions
(28) H;(B) = f e dG;(\) / f €7 dG;(\) (j=1,2);
B A
then H; is a probability measure on the Borel sets. Since by (27),
@) ¢ = [ *da) = [ 7£0) da) = [ 4(0) d&0) = [ ¢ ),
A A A A

we can write ,
1 Y .

(30) H(B) =1 [ a6, (=12
cJs

where 0 < ¢ < . Since
(31) dH;/dG; = ¢/c

we haveforn =1,2,---andj = 1,2
n _ 1 —A\ 7 . _ n! .
(32) fA N dH; () = fA M dG;0) =2 fA fln) d&OV),
so that by (27)
(33) o = f N dHL(\) = f N, () (n=1,2, 1)
A A

. —\
moreover, since 0 < e A" < n!for0 =\ < » ,we have

!
a, = 1 e dG;(\) = n (n=12---),
cJa c

IA

(34) 0

so that the series 37 (an/n!) (3)" < . From a theorem of H. Cramér (Mathe-
matical Methods of Statistics, p. 176) it follows that H; = H, . Since

(35) Gi(By = [ 9 am,0) = f e dH;(\) (j=1,2)

it follows that G; = @, , so that (D) holds.
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We conclude with an example in which A = {0 < A < »}, 0 here playing
the role of — « in Theorem 2.
ExampLE 3. (uniform distribution) Define forAe A = {0 < A < oo}

Fy(z) =0 forz = 0,
(36) = z/\ for0 <z <,
=1 forz = .
Then
(37) limy,o Fa(z) = 0 forz = 0,
=1 forz > 0
and
(38) limy.. Fa(z) = 0

are not distribution functions, and (A), (B), (C) hold.
For any G which assigns unit probability to A we have for z > 0,

(39)  Fo(z) = fAFX(x) dG(n) =f RRLLEY +xf‘ aG)

{0Ag Wz A

Hence if Fg, = Fg, then

= Gy(z) + xf dG:(\)

(40) Gilz) +o [ AW .

{A>z) A

If z is any common continuity point of G; and G, then

d@;(\) _ [Gj(x)]‘” G;i(\) o _  Gi(z) Gi(\)
(41) P> A ) N +»/;x>¢; A2 A = z +-[A>z) A2 ?_\
so that
(42) Gla)+z [ WD _ o[ GO,
>z A >z A2
and hence from (40),
Gi(\) _ G>(\)
(43) f( o= EMa

at every continuity point £ > 0 of Gy and @. . Differentiating with respect to
z gives G1(z) = Ga(x) for every such x and hence G; = G, . (Cf. [13] and refer-
ences for the question of when the “identifiability’ assumption (D) holds.)

The defect of the method of Theorem 2 for estimating G is that the choice of
G, satisfying (9) is non-constructive. In contrast, the method of Section 4,
which bypasses the estimation of G and gives (¢ directly, is quite explicit for the
given parametric family and loss structure.

In the next section we shall indicate a method for estimating G which works
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in the case of a parameter space A consisting of a finife number of elements, and
which may possibly be capable of generalization.

7. Estimating the a priori distribution: the finite case. Consider the case in
which the observable random variable z ¢ X is known to have one of a finite
number of specified probability distributions P, - -+, P,, which one depending
on the value of a random parameter A e A = {1, --- , r} which has an unknown
a priort probability vector G = {g1, -+, g}, gs = O, >.i_1g: = 1, such that
P(\ = 1) = g:. Observing a sequence 2 , 2z , - - - of independent random vari-
ables with the common distribution

(1) Poae B) = £ gPu(B),

our problem is to construct functions

(2) Gim = Gim(ZL, <+, Tn)

such that gin = 0, D71 gi = 1, and whatever be G,

(3) PlliMpoe gigm = gs) = 1(4 =1, -+, 7).
A necessary condition for the existence of such a sequence g, is clearly that
(A) IfG={g, - ,94 and G={g, - ,3}

are any two probability vectors such that for every B,
(4) glgipi(B) = Z; g:P«(B)

then G = G. We shall now show that (A) is also sufficient.

Denote by u any o-finite measure on X with respect to which all the P; are
absolutely continuous and such that their densities fi = dP;/du are square
integrable:

(5) [ £@) duta) < = =1,
X
(For example, we can always take uy = P, 4+ --- + P,,since then0 =< fi(z) = 1
and hence
0 [ £@) du@) < [ 1) dutz) = 1)
X X

The functions f: are elements of the Hilbert space H over the measure space
(X, n). From (A) they are linearly independent. Forif ¢ fi + - -+ 4+ ¢f, = 0 for
some constants ¢; not all 0, then by renumbering the f; we can write

) afi + o+ afe = cnfin + o0+ cofy
with ¢;, - -+, ¢q all positive and 1 £ ¢ < ». Integrating over X we obtain

(8) a+ - Fa=cun+t - +eg=c>0,
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and hence
(9) G = {cl/c’ cte ,Ck/C,O, cte 70} ¢G-= {O’ e ,0,01;4.1/0, ce 704/6}

are such that (4) holds, contradicting (A).
Now let H; denote the linear manifold spanned by the » — 1 functions f; , - - - ,
fia, fisn, -+, fr. We can then write uniquely

(10) fi=fi+f G=1,-,7)

with

(11) fieH;, fi LH;, fl=0.

Hence, setting .

(12) 8@) = 1@ [ [ 17 @F dua),

we have

(18) [, 6otz duta) = P IZh
Now define

(14) n = 05008, Gim = el 030",

where [a]" denotes max(a, 0). If 2, , 22, - - - are independent random variables
with the common distribution (1), their common density with respect to x is

(15) ; gifi(z),
so that by (13),

16)  Bo(a) = [ 6:@) 2 0:5i@) dul@) = 3 05 [ 4:(@ita) du(a) = .

The strong law of large numbers then implies (3).

Returning now to the problem of Section 2 in which we have an action space
4 and a loss structure L(a, \), here specified by functions L(a,7) (¢ =1, --- , 1),
let us assume for simplicity that

a7 0<L(a,7) SEL< » (allacdandz=1,-.--,7).
Then (2.6) becomes ’

(18) Bo(a,2) = 3 [L(a,9) — L(ao, i)y
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and we can set

19) Mty 2) = 2 U0, ) — L(ao, Dfu(e)gin
so that
(200 b lon(a 2) — Aola, D) S LI FoNge — gonl

Since fi(z) < o« for a.e. (u)z it follows from (3) that with probability 1, (2.10)
holds, so that T' = {¢,} defined by (2.11) is a.o. relative to everyG = (g1, - -+ , g:}.

It would be interesting to try to extend this method of estimating G to the
case of a continuous parameter space, say A = {—® < A < «}. One possible
way is the following. Suppose for definiteness that A is the location parameter of
a normal distribution with unit variance, so that z; ,2;, - -- have the common
density function

@) fol@) = [ M= d60);  fa) = (am) e

with respect to Lebesgue measure on X = {— o < z < o},
Foranyn = 1 let '

(22) M <M < < MR

be constants, and let g:» (¢ = 1, -+, k,) be defined by (14) where the f;(x)
of (5) are replaced by f(z — A{™). Consider the random distribution function

(23) G.(A\) = X_gin (sum over all ¢ such that A{® =< ).
Can we choose the values &, and (22) for each n so that, whatever be G,
(24) PG, —G) = 1?
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