MAX-MIN PROBABILITIES IN THE VOTING PARADOX!

By ZaimAN UsiskIN?
University of Illinois

1. Introduction and summary. The voting paradox, that it is possible among
three candidates to have A more popular than B, B more popular than C, and
C more popular than A4 (e.g., let } of a population prefer A to B, B to C; another
3 prefer B to C, C to A; and the remaining § prefer C to 4, A to B) naturally
raises the question of how much more popular they can be, and wha,t results
can be obtained with more than three candidates.

The question corresponds to the mathematical problem of choosing the joint
distribution of » real-valued random variables so as to maximize

min {P(Xl > Xz), cry, P(Xn_l > Xn), P(X,. > Xl)}.

The fact that all these probabilities can exceed % is well known, (see [1]), but

the question of max-min does not appear to have been considered. This note

considers this problem (a) with unrestricted X;, ---, X, and (b) with X;,
, Xn restricted to be independent.

In Case (a), it is very easy to show that the largest possible minimum is
(n — 1)/n, easily achievable. In Case (b), which is more interesting, there is
also an achievable largest minimum b(n), which can be found by solving a
degree [3(n -+ 1)] equation, and has b(n + 1) > b(n), lim,.,, b(n) = 2, and
b(3) = .61803, b(4) = %, ---, b(10) = .73205.

2. Arbitrary random variables X, , - - - , X, . This section considers the prob-
lem of choosing the joint distribution of X;, - -- , X, so as to maximize

min {P(X; > X3), --+ , P(Xos > Xa), P(X. > X1)}.

One such distribution has probability 1/» on each of the points (n,n — 1, --- ,
2,1),---,(2,1,n,---,38), (1,n, ---, 3, 2), where the random variable X; is
a function defined on the 7th coordinate of the n-space.

TrEOREM 1. max min {P(X; > X3), -+, P(Xaa > Xa), P(X. > X1)} =
(n — 1)/n.

Proor. Writing 4 for (X; > X1), we have D P(Ai) = P(X A} =1,
showing that P(A:) cannot all be less than 1/n. Thus P(A;) cannot all exceed
(n — 1)/n. It is easy to see (cf. the example above) that this upper limit is
attainable. (The author is indebted to Mr. G. Haggstrom for this simple proof.)
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To achieve this maximum, it is necessary and sufficient that P(X; > X, >
el > Xn > X1 > e > Xi—l) = l/n,z = 1, 2, cre, N, where Xn+1 = Xl.

3. Independent random variables X;, ---, X,. Find n real-valued inde-
pendent random variables X;, X,, ---, X, with distribution functions F,,
Fy,---, F, 50 as to maximize

min {P(X1 > Xz), crty P(Xn_l > Xn), P(Xn > Xl)}.

Lemma 1. Attention can be restricted to step functions Fi, Fy, --- , F, with
Jinttely many jumps. In particular, if there is an achievable maximum over all
Jinite discrete F’s, this is @ maximum over all F’s.

Proor. The E/s are approximable by step functions, and sup min {P(X; >
Xip)} = sup min {[Z, F;a(z) dFi(x)}.

LEMMA 2. Attention can be further restricted to step functions Fy, --- , F, with
Jinttely many jumps, no two of which have a jump at the same point.

Proor. If X and X, 7 # ¢, both have positive probability on a point a,
then choose € so small that P(a < X < a + ¢) = 0 for all 7.

Shift the probability for X from a to ¢ + e. Then P(X; > X,) is increased
and no others are decreased.

LemMma 3. Writing x; for values of X; with positive probability, we may restrict
attention to distributions where the order of these values from smallest to largest is

xi’xi_l’...,xl;xn,...’xz,xl;... ;xn,...’xz’xl.

Proor. The order of values as written above can always be achieved if we
let some z; stand for values of X; with zero probability.

If there are some z; standing for values of X; with zero probability, then
divide the array into groups, beginning a new group after each z, , and deleting
all z; with zero probability. If a particular z; is deleted, then we can shift the
probabilities on z;41, - - , &, upward to the next group if there is one, and the
probabilities on x; , -~ - , ;- downward to the next group if there is one, with-
out decreasing any P(X; > X,;.;). All groups with any deletions can be removed
by this procedure. If z; is not at the extreme right, then a renaming of the X;
gives the desired array.

LeEMMA 4. Attention can be restricted to distributions in which the ordered pos-
sible values are Tn , ~++ , X1, Tn, -+ , T2 With respective probabilities p, , - -+ , P2,
1, (1 - pn), ) (1 - p2)'

Proor. It is enough to show that in distributions with ordered possible
values «++ Tp, ***, L1 Tn, -, T1; Tn, -, &1 and respective probabilities
et Tny T3Py 7p1;(an_pn)’ ] (al—pl)’Whereo <pw<a't§ 1’
these probabilities can be changed to <« 74, *++ , 13 qn, *** , q1; (G — @n),
«++, (@ — q1), where 0 < ¢; < a;, and some g¢; is 0 or a;, without decreasing
any P(Xq, > Xi+l)'

In the change from p; to ¢;, P(X; > X;1) is increased by pi(ai1 — pit1) —
qi(@iy1 — in1), 1 £ 7 < n, and P(X, > X;) is increased by qi(a. — ¢a) —
D1(@n — Pa).
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Multiplying all the X probabilities by ¢; > 0 multiplies P(X; > X..) by
Ci*Cit1, Cay1 = €1, and does not affect the sign of these increases.

We do not have to consider the probabilities r,, -- -, r; since they have no
bearing on the change in P(X; > X,) caused by changing from p; to ¢; .

Letting ¢; = 1/a; for all 7, we need only consider the modification of dis-
tributions with values p,, ---, p1, (1 — Pa), ---, (1 — p1). In this case,
P(Xq, > X1;+1) =1- p¢+p{p¢+1,f01‘i = 1,2, cre, N — l,a,ndP(X,, > Xl) =
P — DPi1Pa -

If none of these is to decrease as the p.’s are changed at rates p: , we must
have —p; + ppiy1 + Pippi = 0, P1 — paps — 1P = 0; ie.,

(1) pin 2 [(1 — pa)/ppi,  pa < [(1 — pa)/pilpa

requiring p, = [(1 — p.)/mlap:, where « =l = p)/pd, pe =
[(1 — pa)/pilp1 .

If a < 1, conditions (1) can be satisfied with p; > 0 for all 4, p; = 1, in which
case ' < 0, 50 a remains <1. The increases in p’s can be continued until
some p, reaches 1.

If @ = 1, conditions (1) can be satisfied with p; < 0 for all ¢, p, = —1, in
which case &' > 0, so a remains =1. The decreases in pss can be continued
until some p; reaches 0. ’

In either case, we have reduced to distributions with probability on one fewer
point. This procedure can be similarly applied repeatedly to distributions with
probability on 2n or more points, modifying to distributions with probability
on 2n — 1 points.

Lemma 5. Attention can be further restricted to distributions for which the
P(X, > Xiu1) are all equal, since if these are not all equal the probabilities can
be changed to increase min,,... , P(X; > X.1).

Proor. For ordered values &, «++ , %2, %1, Zn, - -+ , &2 With respective prob-
abilities p,, -+ , P2, 1, (1 — pa), -+, (1 — pz), we have P(X; > X;) = p.,
P(X;:> X.p1) = 1—p1+p1p¢+1,forz—2 ,m— land P(X, > X;) =
1 = P As the p.’s are changed at rates i, these probablhtles change at rates
Pz, Pipiss — (1 — pijyn)pi and —p, .

If P(X; > X;41) > minjy,...n P(X; > Xj41), for some 7 among 1,2, --- , n,
take ps > 0, ps > 0, -+, pi > 0, Pips < 0, - -+, pn < 0, and with pj., >
[(1 — pjp1)/pilp; . (If ¢ = 1, there are no positive p;’s; if ¢ = n, there are no
negative p;’s.) This will decrease P(X; > X.,1), increase all the others, and
the minimum will be increased.

TraEOREM 2. b(n + 1) > b(n), where b(n) = max min {P(X; > X,), ---,
P(X,1 > X,), P(X. > Xu)}.

Proor. The existence of an achievable maximum follows from Lemma 4,
since the p,’s there form a closed bounded set, the probabilities P(X; > X.y1)
are continuous functions of the p;’s, and no increase is possible by taking dis-
tributions with more points of positive probability.

Let p2, - -+, pn be values achieving the maximum b(n) in Lemma 4. Add
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another random variable X,41, changing the ordered probabilities to

pn,"')p2|1yl, (l_pn),"',(l—M)-

Now P(X;: > Xipy) = b(n) fori = 1,2, ---, n, but P(Xpu > X1) = 1.

By Lemma 5, all P(X; > X;u1) = P(Xap1 > Xi) for the values achieving
the max-min with » + 1 random variables. So the values above do not yield
the maximum. By the same Lemma, we can increase P(X; > Xiy) = b(n)
and decrease P(X, > Xi1) = 1. This yields distributions of n -+ 1 random
variables with P(X; > X,), P(X: > X3), -+, P(Xa > Xup1), P(Xnp1 > X1)
all >b(n). Thus b(n + 1) > b(n).

THEOREM 3. lim,., b(n) = 2.

Proor.

(1) limg.ob(n) = £. Suppose b(n) > 4. Now p2 = b(n). If p; > % and
b(n) > §, since piqa = 1 — {[1 — b(n)l/pd, Piv1 = 3. S0 ps, Pa, -+, P are
all >3, by induction. But p, = 1 — b(n) < %. This contradiction shows that
limg,. b(n) = %

(2) lim b(n) = £ by the following example:

Consider » random variables X, --- , X, n > 2,

P(X;=0)=1
with
PX;=1—4%)=(mn—14+1)/n,
PX;=n+1—-3)=0GC—-1)/n;, 2=2,---,n.

For these distributions (not the best possible), P(X;: > X.n) = i/n +
[(n—2)/nl[(n — ¢+ 1)/n],2= 0,1, .-+ ,n — 1. The minimum P(X; > X;.1)
occurs at ¢ = 3(n — 1) for n odd, and at ¢ = n/2 or 3(n — 2) for n even.

For n odd, P(Xiuty > Xiusn) = (30 — 2n + 1)/4n’, the minimum for
these distributions.

For n even, P(Xiure > Xiupy) = (30 — 2n)/4n’, the minimum for these
distributions.

Thus lim ming.. {P(X; > Xiu)} = § for n odd or even, and this limit is
not greater than the limit of the best group of » random variables.

TaeorEM 4. There is a unique set of probabilities p1, - -+ , pn achieving b(n),
and these have

(i) pige =1 = pa—sfore=0,1,--- ,n — 2.

(i) limpswpi = (1 +17)/20fori = 2,3, ---.

The value of b(n) can be found by solving a polynomial equation of degree
(n + 1)

Proor. From the recursion relation of the proof of Theorem 3, each p; is
determined uniquely in terms of b(n).

(i) piya = 1 — P by induction.

Fori = 0,P(X; > X;) = P(X, > X,) impliesps = 1 — p,.
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TABLE 1
n gn(b) Lower Approx. by Upper Approx.
3 24 b—1 7/16 = .4375 (5% —1)/2 = .61803--- 5/8 = .6250
4 3b2 — 2b 5/8 = .6250 2/8 = .66666- - 27/40 = .6750
5 B4+ 3p2—4+1 95/144 = ,6597 .6944--- 7/10 = .7000
6 4b — 202 —2b + 1 11/16 = .6875 23/2 = .70710--- 5/7 = .7143
7 b4+ 668 — 9b2 4 3b 279/400 = .6975 81/112 = .7234
8 5b¢ — 924 6b—1 17/24 = .7083 35/48 = .7292
9 b5 + 1064 — 1563 + 3b2+4 3b — 1 559/784 = .7130 11/15 = .7333
10 6b8 -+ 5b¢ — 24b3 4 18b2 — 4b 23/32 = .7188 3‘ -1 = .73205--- 81/110 = .7364
20 53/72 = .7361 209/280 = .7467
25 6255/8464 = .7390 243/325 = .7477
30 143/192 = .7448 637/850 = .7494

Suppose true for ¢ = k. prye = 1 — pa—y . From the recursion relation, pry142 =
1 —[1 —b@®))/prz =1 —[1 — b(n)]/(1 — pa). From the same relation
reversed, pni—1 = [b(n) — 11/(Pa—s — 1). Thus pri142 = 1 — Pus—1 and the
proposition is true for ¢ = k£ 4 1.

(i) liMpoe P2 = liMpae b(n) = £, 80 limy,e p: = (1 + 4)/2¢ is true for
=2,

Suppose true for ¢ = k: ie., imu.., px = (kK + 1)/2k.

If true for ¢ = k, limp.e Prq1 = lim {1 — [1 — b(n)]/pd} = (k + 2)/(2k + 2),
so true for ¢ = k + 1. Therefore lim,., p; = (¢ 4+ 1)/2¢ by induction.

Determination of b(n). From the recursion relation, p, = 1 — [1 — b(n)]/pr— .
But p,» = 1 — b(n). Thus b(n) = [1 — b(n)]/Pr .

If we let f,(b) = b(n) — [1 — b(n)]/Pna, and write b for b(n) when con-
venient, then the solution of f,(b) = 0 between % and £ is the value of b(n).

From the recursive relation for the p;,

fb) =b— —L=b
1— 1— b4
1— 1 — bs
1=
1—0,
1-=
where by = by = --- = b, = b, indexed to show the number of steps in the con-

tinued fraction. Thus f,(b) = b — (1 — b)/[1 — b + fua(d)].
Letting f:(b) = ¢:(b)/h:(b), we obtain

f, (b) = bgn—l(b) - (1 - b)2hm—1(b) - gn(b)
" gn—1(b) — (1 — b)ha_1(b) ha(b)
Since the solutions of f,(b) = 0 are identical with those of g.(b) = 0, a recursive
relation for g,(b) will suffice.

From the system of equations, g.(b) = bgs_1(b) — (1 — b)*ha—s(b), and
(1 = b)gaa(d) = (1 — b)gas(d) — (1 — b)hns(b). S0 gn(b) — ga-1(b) =
—gn-2(b) + bgn—2(b), i.e., gn(b) = gu-1(b) — (1 — b)gn—2(b).
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Determination of g,(b) for n = 3 and n = 4 makes it possible to determine
g-(b) for any =, and gives a means for determining b(n).
n=3 f(b)=b—(1—=0)/b=("+b—1)/b.
i.e,gs(b) =0 +b— 1.
1—0b
1— (1 —=0)/b
i.e., gu(b) = 3b2 — 2b.
From the recursive relation, deg [g.(b)] = deg[g:_1(b)] + 1 if and only if
deg [g:_1(b)] = deg [gi—2(b)]. The latter is true only when ¢ is odd. Thus the

degree of g,(b) increases by one only when n is odd, otherwise remaining the
same. By simple induction we see that deg [g.(b)] = [3(n + 1)].

n=4: fi(b) =b— = (3b® — 2b)/(2b — 1).

4. Approximations to b(n). Rough lower and upper bounds were constructed
for b(n) in Theorem 3. They are

fornodd: (3n* — 2n 4 1)/4n° £ b(n) < 2
for n even: (3n — 2)/4n = b(n) < 2

A better lower bound has been constructed and a better upper bound is con-
jectured ; namely,
fornodd: 2 — 1/4(n — 2) — 1/16(n — 2)* < b(n) < &1 — 2/n(n + 1)]
forneven: 2 — 1/4(n — 2) < b(n) < 31 — 2/n(n 4 1)].

5. Application. Consider n types of steel, numbered 1 to n, the bars of each
type having a predetermined distribution of strength along their lengths. Ran-
domly choose a sample bar of each type. Measure relative strength of two bars
by pressing one against the other at a random place along the length of each
bar—whichever breaks first is weaker. It is quite possible that each randomly

chosen bar is stronger than the next and the last is stronger than the first. Let p;
= P(4th bar is stronger than the ¢ + 1st). Then b(n) = max mini,...,» {pi.

6. Acknowledgment. My thanks go to Professor Colin Blyth for his sugges-
tion of the problem and for his generous help and guidance throughout its solu-
tion.
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