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1. Summary. The exact and limiting distribution of quantiles in the univariate
case is well known. Mood [3] investigated the joint distribution of medians in
samples from a multivariate population, showing that their distribution is
asymptotically multivariate normal. Recently Siddiqui [4] considered the joint
distribution of two quantiles and an auxiliary statistic and showed that asymp-
totically their joint distribution is trivariate normal. Further, he showed the
“Jistances” Xi4; — Xi, Xi — Xi_n, (I and h fixed positive integers) between
quantiles in the univariate case, when appropriately normalized are asymp-
totically independently distributed as Chi square r.v.’s with 2/ and 2h d.f.
respectively. In this paper the joint distribution of several quantiles from a
bivariate population is obtained and it is shown that the distances between
quantiles in the separate component populations are independent asymptotically.

2. Assumptions and notation. Let F(z, y) be the absolutely continuous d.f.
of the pair of random variables (r.v.’s) (X, Y), having joint p.d.f. f(z, y) and
marginal d.f.’s and p.d.f.’s Fi(z), Fa(y), fi(z), and fo(y) respectively. Let {a,
ng be the unique real numbers satisfying F1({a) = o, Fo(n5) = 8,0 < o, 8 < 1,
with fi(fa) # 0, fa(ns) = 0,and pub g1 = F($a,m), 2 =B — 1, B = @ — ¢,
@ =1 — a— B+ ¢1. Then ., 15 are quantiles of orders « and g, respectively,
of F; and F,. We assume that F(z, y) has first and second partial derivatives
continuous in a neighborhood of ({a, 7). Let (X, Y;),¢ = 1,---,n, bea
random sample drawn from F(z, y), and let Z{” < Z{” < --- = Z\" be the
ordered sample values of X;, X;, - - - , X . Similarly, let W{” = Wi” < -+ =
W™ be the ordered values of Yy, -, ¥,. Finally, {r*”}, {s} will denote
sequences of positive integers depending on the sample size n in such a way that
™ /n — a, s™/n — B. We shall first find an asymptotic approximation to the
joint p.d.f. of the k 4+ 1 + 2 r.v.s Z{Thyi, Withyj, s = 0,1, -+, k; 5 = 0,
1, -+, I, where k and [ are fixed positive integers, and then show that the
“distances”

(1) df‘?”))+i.l = Z,('?rn))+¢+1 — Zf‘?n)).‘_,', 7 = 0’ 1., k
’ .
(2) de(('?))-l-:i'l = W‘s?"))+j+l - We(r?"))+i: J=01---,1

are asymptotically independent r.v.’s. Unless otherwise specified, the range on
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7 and j will henceforth be assumed as given above. For simplicity we shall omit
the superscript in 7 and s in what follows.
We shall use the following notation:

o= F(x ’ ’yo), p2 = Fz(yo) - F(xk ’ yo), p3 = Fl(«’vo) - F(xo ,yz),
Yo
(3) M = 1 — Fi(z) — Fo(y) + Flaw, 1), pf° = _[w f(zi, v) dv,

Z0 00 )
o = [ fww P = [ S, dy o = [ i,y du
—® 1 Tk

3. Asymptotic joint distribution of (d{%) 14,1, dS%45.1). First we shall derive
the joint density function of Z3), Wi} ,i=0,1, -+ ,k;j=0,1, ---,1 We
find the probability P(A) of the event

A = {z: — $0u; < 233 S @+ 0w 5y, — 30y S WL S s+ By,
i=0:17""k;j=071"":l}'

Divide the whole plane into mutually disjoint rectangles R,(ux = 1, 2, 3, 4),
RP({=0,1,---,k),8G =0,1,---,1), ete., as shown in Figure 1.
We consider the disjoint events A4, , 4; where

A; = {at least one of (Z3}, Wib)) = (Xa, Ya) fora =1,2,--,n}

A; = {no Z{}) and no W(}} are components of the same random vector}.

! @ L. @
'dx"*m:fx R R o Ri : R, | R
Y Se
Y 'h‘&
i +%ij o @
'ﬁ S,' S.i
Y74
¥ .
H°+ AH, Sm Stz)
Yo—EaY, — -
R, R::) L. R;" L. R:) R,
xﬁ—’i'Axo X, + iAxo xi—*h\xi X, +i'Axi xk-'ézaxk X+ iaxk

Fig. 1
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Clearly, P(A) = P(ANA;) + P(ANA,). It can be easily shown that
P(ANA;) = P(ANAy)k,.(x, y)/n, where k,(z, y) tends to a finite limit as
n tends to infinity. As such

(4) P(A) = P(ANA,)[L 4 0(n™)].

In order that the event A N A, be satisfied, an examination of the situation
reveals that points V,, = (X3, Y4) canonly fallin R,(u = 1, 2, 3, 4), along with
one point in each of R{”, 8’; v = 1or2,¢=0,1,--- ,kandj = 0,1, ---, L
The distribution of V, in the plane will be as follows:

Let n, be the number of Vs in Ru(x = 1,2, 3, 4); then ) sn, = n — (k
+ 1 4+ 2). The remaining (k + [ 4+ 2)Vys fall in R{” and S{” in all possible
2*+1*2 (different ways arising from ¢ = 0,1, -+, k;j = 0,1, ---,land » = 1
or 2. Thus

4

G) PNy =T T IT = P[R“‘“)l)ﬁIkIP[Rﬁ""lP[s,i’“]

viwvy n1=0 J=0 =0
where

4
dSn=n—(k+1+2),

p=1
(6) m+n=s—1s—2---,ors —k —1,
m+nm=r—1,r—2 .- orr—101—1, 6=1,2---,14+1
and the prime on summation means that the summation is to be carried out
through all 2°*'*? different combinations of »; = 1,2 and »; = 1, 2.

Henceforth, whenever the expression (5) appears, it will be subject to the
restrictions given in (6). Thus from (4) and (5), we get

M P =0+0m L T (T2 A W’]) I1 [T PIRSIPISE,

viwwj n1=0 j=0 7=0
Dividing by JJ%-0 I]}=0 Az:Ay;, and takmg the limit as Az; — 0, Ay; — 0, we
obtain the joint probability density function ¢‘™(x, y) of Z{}}, W} . Now for
w=1,234i=0,1,-- kj=01--,5and» = 1,2 lim PR = ps,
lim P[R{"] = p{”, and lim P[8{”] = (”) Where ‘all the limits are taken as Az; —0
and Ay; — 0. Hence from (7), we get

® PEp=T % Hn [ P )HHp”” 7L+ 0],

viwj n1=0 j=0 =0

—0 <z < 0, ;< Tin < ©0,71=0,1,-- k-1 —o <y < o0,y; <
Yirn < 00,]'=O,1,---,l—-lwherex= (xl,"',xk)a'ndY’: (yl"":yl)-
Let

©) o =pm+ o+ ps+ ps=1—[Fi(zx) — Fi(w)] — [Fo(y1) — Fa(to)]
+ [F(ze, y1) — F(ar, yo) — F(xo, y1) + F(xo, yo)]
and 6, = p,/ca, 50 that ) e 6, = 1.
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We now consider the normalized r.v.’s U; = nd%),, V; = nd{5h, (¢ =

1oy ksi=1,000,0), Ty = nM(Z" = {),and Ty = n*(W.” — n). On apply-

-ing the transformation u; = n(z; — i), v; = n(y; — Yj1), b = ni(ze — ¢,

and &, = n¥(y, — 1) to (10) [with Jacobian n~**"*?], we find that the asymptotic
joint density function of Uy, ---, Uy, V1, ---, Vi, Ty, T, is given by

(10) K2 (u, v, b, ) = APAPAPN + 0]
where
4
1 m) _ :,. — :—(k+t+2)
(11) Af LII C C

I k
(12) Aén) = ZI H HP?‘)U‘?")

v.‘.v;. 7=0 1=0
r—8 4

(13) 47 =n 2 T1 {ln — (& + 14 2)1t/nu}60%,

n1=0 p=1

with0 S u; < o(t=1,---,k),0=20v; < o(G=1,---,1), —o < t,
< o, u= (U, , W), V= (0, ,0);and 2o = { + n %,y =
7 + n . (Note that n~*"*Pn1 ~ [n — (k + 1 + 2)]!, for fixed integers k& and
l,asn — x).

To find the joint asymptotic density of Z{™, W™, d3), and d:$%) , we con-
sider

Cn = {1 — [Fl (xo + Zk: Us n) — Fl(:vo)]

=1
l
- [Fz <?/o + Z:i v; n) - Fz(yo)]
k l k
+|:F<xo+§u,- n,yo+§lv,~ n)—F(xo+Zu.~ n,yo)]

t=1

[
—-[F<xo,yo+zv:‘ n>—F($o,yo):|}
j=1 zo=t+n"heyyo=ntn"hty

Since F(z, y), F1(z) and Fy(y) have continuous derivatives with respect to z and
y, we apply the law of mean, and obtain after some simplification,

(14) ¢n = [1 — <g u;/n)fl <§‘ +%> — (Jz_:llv,- n) fz(’n + %)] + o(n™h)
so that
k l
(15) AfY — exp — [fl(i’) ;1 ui + fo(n) 121 Ui:l .
Also, it is easily seen that

l k
) 1 2, 1 2,
48 = T + o) 1L 6 + o).
— 1=
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The limiting value of 45™ (evaluated at 2o = ¢ + n ¥, yo = n + n''t) is
obtained as follows. Referring to (3), we see that

w oo (" e
pi + pi (f_w f(xwv) dv"'];} f(xnv) dv)Q

- (fl(x,-) - f: (@, 0) d”)o

e = (fl(xi) - ]l; v; (s, £)>

(yo < &< y1)

)
0

_ z; — ¢ (9fi(x) -1
= 0) + 555 (D) o) — o)

where ( )o means that o = ¢ + n7%%, o = n + n %% are to be substituted in
the expression within the brackets. In these calculations we used the fact that
i 4

zi = D wi/n + tl/n* + & yi= 2, vg/n + tz/n* + 1.

a=1 B=1
Similarly, .
(17) i’ + of” = fa(m).
It follows now from (16) and (17) that
(18) 45" — [AOTF R

Finally, the limiting expression for 2™ (u, v, # , ) will follow on evaluating
lim 4§™. To do this, we proceed as follows. From (9) and (14) (and noting that
6, = C3lp), it follows that ¢, = 1 + O(1/n), 6, = pJ1 + O(1/n)]. Using the
law of the mean and recalling the definition of ¢,, u = 1, 2, 3, 4, it is easily
shown that p, = ¢.[1 + O(n™?)], and hence that 6, = g.[1 + onH,u=1,02
3, 4. Using the theorem in the Appendix, it readily follows that

""‘/::'O,I:II[("_’“—’—@!/W]GH

(19)
= [k exp {—% Dz“D'}] [1 4+ 0™

where k = (2r |Z)7%, D = [6fi(¢) taf2(n)], and
s = (a(l—a) aﬂ—91>.

of —q B(1 —B)
Thus from (10), (14), (18) and (19), we finally obtain that the limiting joint
density function of Uy, ---, U, Vi, -+, Vi, Ty, T, is given by

4,8 = o0, 6) [ I mud | [T et ]
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where g(# , t2) = (2x|2)) [exp {—3DZ7'D'}1f1($)f2(n), (agreeing with a result
obtained by Siddiqui [4], p. 148) and

ha(w) = A ND, () = falm)e .
Hence, the distances {d‘})1)5=0, {d:$31}i—¢ are mutually asymptotically inde-
pendently distributed, independently of Z'™ and W{". Finally we infer the

following
TarorEM. di% , di” and d™ = Z{” — W™ are asymptotically independent.
. — —_ ’
Proor. Since d? = Dad%),y and 45 = D jiddh, the asserted

asymptotic independence follows from the asymptotic mutual independence of
the r.v.’s d%) 1 and da$%)

APPENDIX

Here we obtain a theorem on which the derivation of (19) is based. We use
the following trivariate normal approximation to the multinomial probability
law, as given by Gnedenko [2], p. 85. .

LEMMA. Let fo(nq, na, ng, ne) = nl]Lica A7i/mi , with0 <X < 1,0 S m; S
n, 1= 1,2, 3,4, and Y tan = il = 1, and set v; = n—*(ni — n\;),
so thatvs = — (v + vy + v3). Then uniformly in all the n; for which the correspond-
ing v; lie in the arbitrary finite intervals ¢; < vi = ds,

Fulna yma ,ms,ma) = [/ (2nm)i O he s M) [1 + O],

where ai; = N for i % J, @ = Not + Nt and Q = Diox 2 5m Gip; -

For i = 1, 2, 3, 4, we define the quantiles 2 by pi¥ = F(z, y) p” =
Fy(y) — F(=, y), Pém = Fy(z) — F(=, y) and P§”) =1 — Fi(z) — Fily)
+ F(z,y), withz = ¢ + n 7%,y = n + n 't Clearly, ™ — ¢, so that pi™
+ 25" — o, pi” 4 p{” = 1 — a, pi” + pi” = B, p8” + pi” — 1 — 6, and
psps” — p{pi” — af — ¢ . (Note the similarity between the ps™ here and
the p{™ defined in Section 2). We now prove the following theorem.

TaEoREM. For i = 1,2, 3, 4, let v; = n i (n; — np{™) with pi” as defined
above. Then

n Z fa(ma,ne,m5,m4) — (2 | Z I%)"lexp { —%DE_ID’} s

n1=0

where D = [tif1(¢) tfa(n)], and

s - <a(1 —a) af — q1>
af—q BA—=8)/)"
Proor. By the lemma,
(20)  m 2, falna,me,ms,me) = [an n e""":l 1+ 0(n™)]

n1=0 n1=0

where H,' = (21r)+§(p§"’p§")p§"’p§"))i, and @, is @ with \; replaced by ™.
For v; in the arbitrary finite intervals ¢; < v; < d;, we find that
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0+ v =nB — (" + p°] + e/t
o+ v = ntla —(p™ + p§”1 + a/n}

where ¢ and e; depend on 7 in such a way that both tend to zero with increasing
n. Further, let w = n}[8 — Fa(y)] + e/n}, up = 4*[a — Fi(z)] + e/n}, so that

b = w— 0. 05 = U — o1, Putting 1" = i [T Al = ™1™ +
"1™, j = 1, 2, after algebraic simplifications we see that @u = Qs° + @.”
where

;l) = 1r§”) [v, — (u11r§”) + u27"§n))/ "gn)]z
and

@ = (a) {2l [ — w1 i + 2 (/PP — 7w w1 i we
+ m” [rf® — 2l uz} .

Substituting in (20), we obtain

n 2 falma, e, ey me) = HuLaM[l + o™,
where L, = exp (—Q.:?/2) and M, = Z:.1=0 n Y exp (—Q<"/2). From the ex-
pansions Fi(¢ + w7 = Fu(e) + nufi(e) + (2n)TEf(6), ¢ < 6 < ¢
+ 7%, and Fo(n + %) = Fa(n) + nfa(n) + (20) 6f2(8), 1 < 6 <
7 + n ', we obtain easily that

u = —bfa(n) + O(n7) = —tifa(n)
w = —4fi(¢) + O — —ufi(5).

Simple calculations now show that L. — exp (—4Dz'D’) and H,' —
( 21r)*(q1q2q3q4)*. Noting that M, is a Riemann sum, and that ¢;, d; are arbitrary,
it can be shown that M. — (2myi%)}, where ¢4 = Lim x{” = D i ¢:" Since

i liagi = aB(1 — a)(1 — B) — (aB — ¢)’ = |2, the theorem follows.
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