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1. Introduction. The problem of choosing a 1/M = 1/2"*(m > s) fractional

replication from a factorial system of size N = 2" and deciding upon appro-
priate estimator of the parameters characterizing the factorial model (main
effects and interactions) has been studied by Dempster [2], [3], Takeuchi [11],
[12], Ehrenfeld and Zacks [4], [5], Zacks [13], Shah and Kempthorne [9], [10].
In all these studies the type of estimators considered is that which yields, under a
randomized procedure with equal probabilities of choice, unbiased estimates of a
specified subvector of parameters, which lies in the range of the design matrix.
A complete class of linear unbiased estimators for estimating an M -dimensional
subvector of pre-assigned parameters, under a randomized fractional replica-
tion procedure, was studied in [13]. Optimal procedures of choosing a fractional
replication and an estimator were studied in [5].

In the present paper we consider the problem of estimating the entire vector
of N parameters, on the basis of a fractional replication of size S = 2°. This
problem arises when we wish to explore a given factorial system, and find which
are the important parameters. Such a problem calls for a sequence of fractional
replication designs, where each design is modified by the information attained
in previous experiments. At least in the first stages of such a sequence one would
like to estimate the entire vector of N parameters. Presently we consider this
estimation problem for a one stage fractional replication design. We adopt the
least-squares principle, and consider the class of all generalized least-squares
estimators (g.l.s.e.) which corresponds to a given block of S treatment com-
binations. The term generalized least-squares estimators is used since the cor-
responding matrices of the normal equations are singular. The linear spaces of
all g.l.s.e. associated with the various fractional replication designs, of the type
considered here (see Ehrenfeld and Zacks [4] and Zacks [13]), are characterized
in terms of the linear coefficients of the factorial model. As proven, every g.l.s.e.
is represented by an M-dimensional vector (Ao, -+ -, Au—1) where ¥ a = 1.
Some statistical properties of the g.1.s.e., under randomized fractional replication,
are studied. First we prove that there is no randomized fractional replication
procedure for which an unbiased g.1.s.e. of the entire vector of parameters exists.
The problem of which fractional replication to use and which g.ls.e. to apply is
studied in a general decision framework, with the trace of the mean-square-error
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matrix as a risk function. As proven, when the parameters of the factorial model
may assume arbitrary values, the randomization procedure which assigns equal
probabilities to various fractional replications (denoted by R.P.*) is the only
admissible procedure for that risk function. Bayes g.l.s.e. for a prior information
available on the parameters are studied. This leads to a ménémaz theorem, which
specifies a minimax and admissible g.l.s.e. under R.P.* Finally, by applying a
theorem of Rao [8] we characterize the class of all functionals which yield es-
timable linear functions of the parameters, and which have uniformly minimum
variance g.l.s.e.

2. The factorial model and randomization procedures. The factorial model
and randomization procedures are presented in the present section. To save
space, the reader is referred to [4] and [13] for details and definitions of terms
used here. Familiarity with the algebra of factorial experiments is assumed

(see [7]).
Consider factorial systems of order N = 2", and fractional replications of
order S = 2°(1 < s <m). Let X,(v =0, ---, M — 1) designate a block of

S treatment combinations. To simplify the presentation of the results, we as-
sume that the blocks X, are constructed by assigning to the m — s “main
effects” {Bs, Bas, -+, Bv—s} the role of independent defining parameters. The
general presentation can be easily carried out, as shown in [4]. Relative to this
set of defining parameters, the M blocks of treatment combinations are:

X, = (x:ifx = (4o, +* , tm) and
2.1 m—1 X
(21) t = > 42" thent = v(mod. M)).

7=0

In other words, X, contains all the treatment combinations x whose standard
order is equivalent to v modulo M. Here ¢; = 0, 1 denotes the level of factor
j(G=10,---,m — 1). Let Y(X,) be a random vector of order S, representing
the yield of the treatment combinations in block X, . Let 8 = (8o, - - , Bv—1)’
be a parameter vector of the factorial system, representing main effects and
interactions. The relationship between Y (X,) and 8 is given by the linear model
of orthogonal contrasts

(2.2) Y(X,) = (C,)B+ ¢ v=0,---,M—1

where ¢ is a random vector representing the experimental errors, having Efe} = 0
and Efe} = o' I®. (C,) is a 8 X N matrix, which is the sth submatrix of
the matrix (C®), corresponding to the full factorial system. The rectangular
matrix (C,) is related to the lower order matrices (C*) and (€)Y according to

(23) (Cv) = (ly Cﬁl), Tty ci(hjl{{)-l) ® (C(S))) v = O) Y M—-1

where ¢{* (v, w = 0, - -+, M — 1) are the elements of (C**”); (C*) = (C™)
® (C®), and foreach k& = 2,3, - -



698 S. ZACKS

(24) (C®) = (€?) ® (C*™), where (C®) = l:} _ }:l

® denotes the Kroneker’s direct multiplication operator. According to (2.2)
and (2.3) we can write the factorial model in the form:

M—1

(2.5) Y(X,) = Z ciftl)(o(S))B(u) + ¢ v=0,---,M—1
u=0

where Bt = (Bus, Bus+1, - , Busns—1) is the uth subvector of 8.

A randomized fractional replication procedure is one in which each block X,(v =
0,---, M — 1) is chosen with probability &(& = 0; Dol = 1). Every
randomized fractional replication procedure is represented by an M -dimensional
probability vector £ This class of randomized procedures contains in particular
the fixed fractional replication designs, in which one of the blocks is chosen with
probability one.

3. Generalized least squares estimators for fractional replications. Consider a
block X,(v = 0, -+, M — 1) of treatment combinations. We shall characterize
now the class of all g.l.s.e. corresponding to X, . Following the least-squares
principle, the ‘“normal equations” corresponding to the factorial model (2.2)
are:

(3.1) (€)' (Co)B, = (C) Y (X,)

B, designates a generalized least-square estimate of g.

A generalized least-square estimator (gl.s.e.) of B is any linear operator (L)
on B (Euclidean S-space) such that (L,) is an N X S matrix satisfying the
equation:

(3.2) (C)(Co) (Ln) = (Cu)".

Decompose (L,) into M submatrices (L) of order 8 X 8, i.e., (Ls)" = ((Lu)’,
coo, (Luca—p)')- Since (C®) (C®) = SI® it follows from (2.3) that (3.2)

is equivalent to

@ ] [he |
(33) 81Q*) ® I°1] : =" ®(C)
(Loa-v) l_c’uu)
v (M~1)

where (Q(M)) = (1, c,(,f"), ceey, cf,f‘.n}_l))'(l, c,(,i"), ceey c,f‘("f,.)_l)) is a square matrix

of order M X M. Furthermore, since cis ' = =1, Equation (3.3) can be repre-
sented by the following equation:

M—1

(3.4) 2 e (L) (CF) = (I).

Consider the M matrices (L{?), j = 0, ---, M — 1, whose submatrices are
given by:



ESTIMATORS FOR RANDOMIZED DESIGNS 699

(L) = 87ei’(C®), ifj=u

(3.5) .
(0), otherwise.

These matrices satisfy Equation (3.4) and thus constitute a basis of M inde-
pendent solutions to (3.2). Every solution to (3.2) can be represented as a
linear combination of the M linearly independent operators (Li”), namely

M—1 M—1
(3.6) (L,) = Z; M(LS?) where DN = 1.
i= 7=0

Thus, the class of all g.l.s.e. corresponding to a given fractional replication
X,(v=0,:---,M—1)is
M—1 M—1

(3.7) £(X,) = ((L,): (L) = ,Zo‘ ML) Z_‘a A= 1).

Accordingly, every g.ls.e. can be represented by an M-dimensional real vector
A = (N, -, Ax_) such that D_ ="' A, = 1. Moreover, since 8, = (L,) Y(X,)
we have,

(3.8) By = S (Mo, Met”, -+ NaacStit—n)” ® (€)' Y (X,).

4. Some statistical properties of g.l.s.e. In the present section we prove that
there are no unbiased g.l.s.e. of the entire vector of parameters 8, and derive
an expression for the trace of the mean-square-error matrix of a g.l.s.e.

THEOREM 1. There is no unbiased g.l.s.e. of 8

Proor. Let Buy = 8S(C®)'YV(X,), w=0,---, M — 1. As proven in
(18], Ee{Buy} = Bu if, and only if, ¢ = £ = M1, where 1? denotes an
M -dimensional vector whose components are all equal to one. Accordingly

Eelf} = Ex{(\Bo , MBly , =+ + » AaeaBir1)}

(4.1)
= (MBw s *** 5 Ma—1BCa—p)-

Since D_15' A; = 1 the theorem is proven.

The g.l.s.e. in which Ay = 1 and A, = 0 for all 4 > 0 yields unbiased estimates
of the components of By only. Similarly when \; = 1(j=0,---, M — 1)
and A; = 0 for all 7/ # j, the corresponding g.l.s.e. yields unbiased estimates
of the components of 3(; only.

The mean-square-error dispersion matrix of a g.l.s.e. 8, under randomization
procedure £, is defined by Ei{ (8 — 8)(8 — B)'}. Let M (£, \; 8) denote the trace
of the mean-square-error dispersion matrix of a g.l.s.e. represented by a vector A,
such that A1 = 1, under randomization procedure &, ie., M (£ \; B8) =
E{ (8 — 8)' (8 — 8)}.

THEOREM 2. The trace of the mean-square-error dispersion matrix under ran-
domization procedure £ vs given by:

M—1 M—1
(42) M(&XN6) = (o + 181 20 — 2 (2 — D’
M—1 M—-1 M~—1

+ 2 (2N, + 1)( D 2 e BlunBeug

u1=0 UgFuy)=0v=0
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where 8" = B8, |Bwl” = BawBuw(u =0, , M — 1).

Proor. By definition,
(43) M\ 8) = Ed(B — B)'(B — 8)} = EdB') — 28 BB} + 6'6.
According to (3.8)

M—1

(44) E{BB) = 72 NB(Y(X)V(X)).
Substituting (2.5) for Y (X,) in (4.4) we get:

M—1

SEY (XD V(X)) = 5Bl [Z 008w + o

M1
2 e (C®)Buy + eI}

u2=0
(4.5) 2 1 i P M M) 5/ S\’ S,
= o + STE Eo Zodul)ciuz)ﬂ(m)(o( ) (C®)Bug §
uy=0 wup=

M-1 M-1
2 Bwl + X X (X Eesulesi) BunBun)-
u=0 uFEUg v=0

Furthermore, EE{B,} = ()‘OEE{B&’)}: T )\M;IEE{BQM—I)})7 where

M—1 M-1
(4.6) BfBw) = Bw + 2 2 §vC§f)C§f)ﬁ(w) .

(ws£u)=0 v=0

Hence,

M—1
B,ES{B} = ;Aulﬁ(u)P
(4'7) M—1 M—1
+ Zoxu[;: 1( 4 Ev&('fl)c’(':{z))'ﬁzux)ﬁ(uz)]'

U= UogstU] V=

Thus, from (4.3)—(4.7) the result holds.
CoroLLARY 2.1. When each block Xo(v =0, -+, M — 1) is chosen with

equal probabilities (§ = £) then

M—1 M—1

5. Optimum strategies. A strategy of the Statistician is a pair of two M-
dimensional vectors (£, \) such that & is a probability vector, and M19 = L.
Every strategy (£ M) represents a randomization procedure and a g.ls.e. The
decision problem is to choose (£, \) optimally, with respect to the loss function
M(& \; B)-

TuroreM 3. If 8 is arbitrary then £* represents the only admissible randomization
procedure, relative to the loss function M(§ X; 8).

Proor. We have to show that, for every given strategy (£ ), with £ = £,
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there exists 8° in E™ such that: M(¢ \; 8°) > M(£¥, \; 8°). Comparing (4.2)
and (4.8) thi problem reduces to that of finding 8° such that, for the given pair
(&N, E# &,

M—-1 M—1 M—1 or 0
(5.1) 2 @a+ 1) 2 [2, fesioin 18cunBlun > 0.
Without loss of generality, assume A, > 0. Since ¢ = £, Zv-o Evcuf) # 0 for
all u O(C(M) = lforallv =0,--- ,M — 1). Let g’ = (80, 8,0, -+, 0)

with |80 = 1, [8%y] = 1 and such that the angle between the two S—dimen-
sional vectors B, and Bf, , ¢ say, satisfies the equality:
M—1

(5.2) cos ¢ = BloBly = Z A

Then 3° satisfies the inequality (5.1). This completes the proof.

Due to Theorem 3 we restrict the discussion in the sequel to strategies of the
form (&%, )).

We notice in (4.8) that M (£*, \; 8) depends on 8 only through the M values
|8us|®. An a-priori information concerning these values might thus be utilized
for the choice of \. Thus, let =™ be an a-priori distribution of |8w|’, defined
over the half-line [0, » ).

TaEOREM 4. The Bayes g.ls.e. of 8, with respect to the a-priori distributions

(@, -, 2™} under randomization procedure £* is determined by the vector
Ar = ()\“” s ATY), where

M—1
(5.3) A = E’,,(u>{|;ca(u)|2}/uz=‘6 Ero{|Bwl, forallu =0, .-+, M — 1.

Proor. The risk function under (¢*, \) and = is
M-—1 M—1

RN m) = (o + 2 BeollBuol1) 2 N
(5.4) -1
— 1;) (2)\u — I)Eﬂ-(u){lﬁ(u)P}'

It is easily verified that Ay (u = 0, ---, M — 1), given by (5.3), minimize
(5.4) under the constraint M = 1.

Let R = Epw{|Buw|3(w =0,---, M — 1) and R, = 2 45 R%; then
the Bayes risk with respect to an a-priori distribution = is
M—1
R s m) = (8 + Ra) 2 (A7)
(5.5) et
- > @Y - 1)R™ = R, — R.'(1 — ¢*/Rx) Z (RS2
u=0

In particular, when all |Bu|*(u = 0, -+, M — 1) have the same a-priori
distribution, with R\ = R} forallu = 0, --- , M — 1, then the Bayes g.ls.e.
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is represented by \* = (M, M7, --- , M) with a Bayes risk
(5.6) R(E* N\ 7) = ¢*/M + (M — 1)RY.

THEOREM 5. \* = M 1™ represents the minimax and admissible gls.e. under
randomization procedure £ relative to the class of all a-priori distributions w, such
that R. = D uz¢ R\ = const. and (¢’ < R, < »). The minimaz risk is given
by (5.6)

Proor. The minimax risk is the maximal Bayes risk, with respect to all the
a-priori distributions 7 in the class considered. The Bayes risk for any of these
w’s is given by (5.5) where R, = > u-a R is a given constant. Set the La-
grangian ‘

M—1

L(RY, -, R*™;p) = B, — B'(1 — o'/R0) 3 (RS’

(5.7) M—1
+ o(Br — 2 R™).

u=0

By differentiating partially with respect to RS’ (v = 0, ---, M — 1) and p and
equating the derivatives to zero we arrive at the system of linear equations:

—(2/R.)(1 — ¢*/R.)R™ = p for all u=0,---,M — 1,

(5.8) M=l

> R™ =R,.

u=0
The solution of this system of linear equations is given by RS = R,/M for
every u = 0, --+, M — 1. Furthermore, since R, = o°, all the second order

partial derivatives with respect to R{* are negative. Thus all a-priori distribu-
tions = such that R = R,/M for every w = 0, ---, M — 1 are minimax
strategies for Nature. As mentioned before, \* = M1 is then the unique
minimax strategy for the Statistician. The Bayes risk corresponding to \* is
given by (5.6). The admissibility of \*, relative to the class of a-priori distribu-
tions considered, follows from the fact that it is the unique minimax strategy.

6. Estimable linear functions of (3, having uniformly minimum variance
gls.e. Let Y = Az be a consistent system of linear equations. If x = A—y is
any solution to this system then A is called a generalized inverse of A (see [1]).
Rao [8] proves the following theorem: If a linear function {8 is such that for a
given generalized inverse of (C,)'(C,), say [(C.)"(C.)]", the equality
(6.1) UCH (eI (C)] = ¢
holds, for some v = 0, ---, M — 1, then the value of {8 = ¢'[(C,)"(C,)]™
(C,)'Y(X,) is unique; and the function ¢’ is estimable by ¢'8; i.e., E({'8) =
¢'B. Moreover, if ¢'B is any unbiased estimator of {'8 then, Var {{'8} < Var {¢'B}.
This theorem is applied to characterize the class of all estimable linear functions
of B having a uniformly minimum variance.
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From the definition of a generalized inverse of a matrix, and according to
(3.2), if [(C,)'(C,)]™ is any generalized inverse of (C,)’(C,) then

(6.2) By = 1(C)(CI(C.)'Y(X,)

is a g.ls.e. of 8. Comparing (6.2) with (3.7) we conclude that every generalized
inverse of (C,)'(Cy), in a N = s™ factorial system, is given by,

Ao
-0 )
0 ® 1%,

Nl

(6.3) [(C)(C)I” =
A1

forallv = 0, --- , M — 1; where > u=)' A, = 1. According to (3.3) (C)'(C,) =

8[(1, e, -+, eltit—n) (1, 30, -+, eip)] ® I, Thus,

[(C.) (C)TTI(C.) (C
(6.4) )(M) ] (Co)]

() (M) NI, (M) (M) (M) s
=(>\0ch 3 >\lc'ul y ", >\M=lcv(M—1)) (cv0 3 Col 7y * 00, c”(M—l)) ® I( )
-1
where D u=d Ay = 1.
/7 . . .
Let ¢ = (¢w, fw, **, fu-p) be any N-dimensional vector, where

Sw(u = 0,---, M — 1) are S-dimensional subvectors of {. Then for every
v=20,--+-,M — 1, we obtain:

(6.5) FUCH (CHITIC) (CH] = (nw(®), -+, 1= (v))’
where
M—1
(66) ﬂzu)(v) = Csf) Zo chif:)?zw) ) forall u = 0) Tty M-1.

Hence, {'[(C,)"(Co)IT1(C,)'(C,)] = ¢ if, and only if,
M—1

(6.7) Co = e’ 2 Ml forallu =0, ---, M — 1.
w=0

Thus, the set of all N-dimensional functionals ¢ which yield minimum variance
unbiased linear estimators ¢’ of the linear functions '8 uniformly in 8 is

{g':g‘, = (fzo), ) f:M—l));
M—1

M—1

’ M M)/

Sy = e’ Zo chﬁw)i‘m) ; and Z Ao = 1}
e

w=0

(6.8)

where (Ao, -++, Au_1) represents the g.ls.e. f. Given a linear function {'8 we
should check whether there exists a matrix (C,)(» = 0,---, M — 1) and a
veetor (Ao, ***, Ax—) for which (6.7) holds. For example, if we want to esti-
mate the sum of the components of 8, i.e., I™”’8 then, take v = M — 1 (i.e.,
perform the experiment on the block X ;) and the g.ls.e. represented by
A* = MT'19°, Then, since ¢’y = 1 forallu = 0, ---, M — 1, Condition
(6.7) holds. That is, the linear function 1’8 has a uniformly minimum var-
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iance g.l.s.e. On the other hand, there are many linear functions of 8 which are
unestimable by a fixed fractional replication procedure. For example, the linear
function {'8 = B, is not estimable by a fixed fractional replication procedure.
It is estimable by a randomization procedure £* and g.ls.e. represented by
A= (1,0, ---,0), but its variance depends on 8 (see Zacks [13]). A locally
minimum variance g.l.s.e. of 8; can be attained (see Takeuchi [11]) but not a
uniformly minimum variance estimator.
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