EXTENDED GROUP DIVISIBLE PARTIALLY ‘BALANCED
INCOMPLETE BLOCK DESIGNS!

By Kraus HINKELMANN®
ITowa State University

1. Introduction and summary. The class of partially balanced incomplete
block designs (PBIB) with more than two associate classes has not yet been
explored to a great extent. In fact, only a few m-associate class PBIB’s (m > 2)
are known explicitly. One way to obtain such designs is certainly by generalizing
the well-known PBIB’s with two associate classes. Among these particularly
the Group Divisible PBIB’s lend themselves rather obviously to a generalization
in this direction. Roy [8] and Raghavarao [7] have generalized the Group Divisible
design of Bose and Connor [1] to m-associate class designs. The idea of another
type of Group Divisible PBIB’s with three associate classes, given by Vartak
[11], was extended to an m-associate class design by Hinkelmann and Kempthorne
[5] which they called an Extended Group Divisible PBIB (EGD/m-PBIB).

In this paper we shall investigate the. EGD/m-PBIB in some detail. The
definition and parameters of this design are given in Section 2. In Section 3 we
shall prove the uniqueness of its association scheme. For a design given by its
incidence matrix N, the properties of the matrix NN will be explored in Section
4. The eigenvalues of NN, its determinant and its Hasse-Minkowski invariants
¢, are obtained, and non-existence theorems are given. These. theorems are
illustrated by examples. An example of an existent EGD/m-PBIB plan is given.

2. Definition of the EGD/m-PBIB. It is convenient to characterize the
associate classes of this design by the ordered v-plet v = (v1,v2, -+ - ,7,) where v,
is either zero or one (¢ = 1,2, --- | »). The v-plet (0,0, ---,0) corresponds to
what is sometimes called the Oth associate. Thus we have in this way m = 2" — 1
associate classes. Denote the collection of all »-plets y by Ty and the collection of
all such »-plets except (0,0, ---,0) by I'. We shell refer to the components in
a v-plet which are equal to one as the unity components of this »-plet, and
similarly to the components which are zero as the zero components. Then we
define the EGD/m-PBIB as follows.

DErFiNITION 2.1. An incomplete block design is said to be an EGD/(2" — 1)-
PBIB if it satisfies the following conditions:

(i) The experimental material is divided into b blocks of & units each, different
treatments being applied to the units in the same block.
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(ii) There are N = NN, --- N, treatments denoted by (¢1,%, - ,4%,)
(=12, ,Ny;4=1,2,--- ,Ng; -+ ;4,=1,2,--- | N,); 1 being called
the kth component of the treatment (k¥ = 1,2, --- , »). Each treatment occurs
in 7 blocks.

(ili) There can be established a relation of association between any two
treatments satisfying the following requirements: (a) Two treatments are
yth associates if they differ only in the components that correspond to the unity
components of y(y € I'y). (b) Each treatment has exactly n(y) yth associates.
(e) Given any two treatments that are yth associates, the number of treatments
common to the v'th associates of the first and the 4”th associates of the second is
py(Y'; ¥”) and is independent of the pair of treatments with which we start.
Also

p+(Y57") = pr(v" ;¥ ) (v, ¥, ¥" € To).

(iv) Two treatments which are yth associates occur together in exactly A(y)
blocks, with A (00 --- 0) = r.

One can see immediately that for any y ¢ T
(2.1) n(y) = JI W:-1)

TeI(7) .
where I(y) is the set of all 4(1 £+ =< ») for which ;=1 in v, and
n(00 ---0) = 1.

The parameters of the second kind can be exhibited in 2" symmetric P-matrices
of order 2" X 2’ in the following way. A balanced incomplete block design (BIB)
can be considered as a special case of a PBIB with one associate class. For N
treatments its parameters of the second kind according to the zeroth and first
associates, respectively, are the elements of the two matrices

(22) P":B NO— 1]’P‘=[? Nl—z]'

To express the dependence of these matrices on the number of treatments, N,
we shall write these matrices more specifically as P§™ and P{". Since for » = 2,
ie., N = N1N,, the EGD/3-PBIB is the Kronecker product of two BIB designs
with N, and N, treatments, respectively, (Vartak [9]) its P-matrices can also be
written as the Kronecker product of the corresponding P-matrices of the BIB
designs as follows (it is convenient to write the associate classes in the standard
order in which one writes down the main effects and interactions of a 2” factorial
plan):

Py = PthZ) x P(()Nl), Py = P(()Nz) x PiNl)

Py = P§N2) x P(()Nl)’ Pll — PfNZ) x P{Nl)

where P, P{™° P P{"® are obtained from (2.2) with N = Ny, N,,
respectively. In general, this procedure can be used to obtain the P-matrices for
v factors from the P-matrices for » — 1 factors. We then have
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_ p@)
P‘ll‘YZ""Yv—lo =P¢" x P’Y!‘Yz""Yv-!

(2.3)
Pyrgeoiyy_n = P{™ x Pyiyperyys
where P§™ and P{* are as defined by (2.2) with N = N, .
The parameters of the PBIB so defined satisfy the relations
Nr = bk, Z n(y) =
k4

el

(2.4) y?.:ron(v)k(v) = rk, 7;0107(7 377) = n(v")

n(V)py(v'37") = (Y )Py (v; ") = n(¥" )Py (75 7).

To illustrate the notation introduced in Definition 2.1, we consider the following
example,

ExampLE 2.1. Suppose N = 24, N, = 2, N; = 3, N3 = 4. The treatments are
denoted by (17 l: 1), (2, 1: l); (1, 2, 1)) (2, 2, l)’ (17 37 1)) (2: 3) 1)7 (17 l’ 2),

, (2, 3,4). The (1, 0, 1)th associates of treatment (2, 2, 1), for example, are

(1,2,2), (1,2,3) and (1, 2, 4). From (2.1) we obtain n(100) = N, — 1 =1,
n(010) = N; — 1 =2,7(110) = (N; — 1)(N: — 1) = 2,n(001) = N; — 1 =3,
n(101) = (N; — 1)(Ns — 1) = 3,n(011) = (N, — 1)(N; — 1) = 6,n(111) =
(Ny = 1)(N: —1)(N; — 1) = 6.

3. Uniqueness of the association scheme. In this section we shall prove a
theorem on the uniqueness of the association scheme of the EGD/ (2" — 1)-PBIB.

TureoreM 3.1. If the parameters of an EGD/(2" — 1)-PBIB satisfy the Condi-
tions (2.1) and (2.3) in connection with (2.2), then the association scheme for its
treatments is uniquely determined and vs given by iii(a) of Definition 2.1.

Proor. We shall prove this theorem by induction. First we observe that the
association scheme is unique for » = 2, i.e. if N = NN, . This has been shown
by Vartak [11] (if we take the second associates of his design to be our (1, 0)th
associates, his first associates to be our (0, 1)th associates, and his third associates
to be our (1, 1)th associates, we obtain the association scheme iii(a) for » = 2)
Now suppose the uniqueness has been shown for (» — 1) factors; i.e., for N*
NN, - -+ N, . Then we have to show that it holds also for » factors ie., for
N = N1 Nz' M 'Ny_] Ny-

Because the proof is somewhat long, we shall first describe the steps to be
followed:

1. The N treatments can be divided into N* groups of N, treatments each on
the basis of the (0, - - - , 0, 1)th association, where there are » — 1 zeros.

2. Taking one treatment from each group, the N treatments can be divided
into N, groups, G1,G:, - -, G, , of N* treatments each on the basis of the
(v1,72, - » Y1, 0)th association for all possible (y1,7vz2, *** , ¥s-1)-

3. We show that the treatments in each Gi(k =1,2,---,N,) form an
EGD/(2" — 1)-PBIB. Using the induction hypothesis, the treatments in
each such group can be indexed by (» — 1)-plets according to the requirements
of an EGD/ (2™ — 1)-PBIB.
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4. Each treatment is therefore indexed by a (v — 1)-plet and a (1)-plet, the
latter indicating the group G: it belongs to. These indices are combined into a
v-plet by adjoining the (1)-plet to the (» — 1)-plet.

5. We show that the resulting »-plets give an indexing that satisfies the
EGD/(2" — 1)-PBIB requirements.

We are given symmetry of the association scheme. Let 6 and ¢ be any two
treatments which are (0, ---,0, 1)th associates. Denote the n(0 ---01)
(0, ---,0,1)th associates of 6 by 61, 612, -+, f1.n0---0n and those of ¢ by
b1, b2, ,P1,n0-0n. Then 6 is one of the ¢1;’s and ¢ one of the
bi’s (1=1,2,---,n(0---01). For definiteness let ¢ = 6 and 6y = ¢.
Since by (2.3), po...01(0 ---01;0 --- 01) = N, — 2, it follows that the sets 6
and ¢;; have exactly N, — 2 = n(0 --- 01) — 1 treatments in common. Hence
any two treatments of the set {6, ¢, ¢12, -+ , d1,000...0 »} are (0, ---,0,1)th
agsociates. This implies that we can divide the N = N *N, treatments into N*
groups of N, treatments each. Denote these groups by

(¢11, 012, -+, d1,w,)

(3.1) (¢217¢’22y e y¢’2.Ny)

(ws,1,bnv2, **+ , bne,m,)-

Consider now a (vi,vs, '+ 7¥i1,0)th associate of ¢y for some
(vi,va, -+ ,vel) € T,y , where T, is the set of all (y1,v2, - - ,¥,—1) except
(0, - -+ ,0). Denote this treatment by #», which is contained in some group of
(3.1) except the first. By (2.3) we have py,..y, _0(0 -~ 01; 71+ v40) =0
for all (v1, +++ ,¥s—1) € T,y . Hence ¢ is the only (77, - -+ , vi_1, 0)th associate
of ¢y1 in this group. In general, any other group except the first contains at most
one (')’1 3 Y2y "t V-1, O)th associate of du for any ('Yl s Y2y ‘y,,_1) e,
AISO by (2 3)’ Y 2P 10(0 -0 1’ 7{ : 'Y:—IO) = 0 for all (71 Y2, 0 )71'—1)7
(v1,73, -+ ,¥r) € Toey s i, if 8 group in (3.1) contams a (Y1, *** ,%v1,0)th
associate of ¢y it cannot contam a (v1, -+ ,vr1,0)th associate of ¢y for
(71 y T ’71'—1) #= (7;7 e 77:—1)~

Now, by (2.1), > n(y1 - v—10) = N* — 1, where the summation is over
all (v1, *++,vw-1) € I'1 . It follows then that the 2nd, 3rd, - - , N *th group in
(3.1) each contains exactly one (v1, --- ,v.—1,0)th associate of ¢y for some
(71, * Y1) €Tva. The same holds true for ¢, - ,¢1,5, . Since
by (2.3) poo1(ys - %-10; y1 0 %0) =0 for all (y1, -+ ,7-1) and
(v RN 7,_1) e T,_1, we can divide the N = N*N, treatments into N, disjoint
groups of N* treatments each. Denote these groups by Gy, Gz, - - - , Gy, . Each
G.(k=1,2,---,N,) contains then exactly one treatment from each group in
(3.1).

From the previous arguments it is clear that for all (vi, ---,vw-1) € vy
only the (v1, - - - ,v,-1, 0)th associates of any treatment in G; are also contained
in Gy . Further, by (2.1), n(y1 - - - ¥»-10) = n(v1 - - - v,-1) and, by (2.3),
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’ 7 n V/4 7 ! V/4 V4
Dyreeory10(¥1 = ¥9m10571 2+ ¥9m10) = Dypeeeyy o (V1 0 Vo1 571 00 Yee1)

for all (v1, "+ ,¥-1), (¥4, **+ ,¥s=1), (71, "+ ,¥v1) € Ty . Hence we have
within each Gy(k = 1,2, ---,N,) an EGD/(2" — 1)-PBIB with N* treat-
ments and, by the induction hypothesis, a unique association scheme among
them. Further, the (y1, -, %1, 0)th associates of a treatment in G, con-
sidered within the frame of an EGD/ (2" — 1)-PBIB, can be taken to be the
(71, *++ , v»—1)th associates of the same treatment, considered within the frame
of an EGD/(2"™" — 1)-PBIB.

Now denote the treatments in Gy by the (v — 1)-plets (4%, 35, - - - , ts_y) With
=152 ... Ni; =152 ... N& ... =12 ... N:, for
k=1,2,.--,N,. This indexing is done according to the association scheme
for an EGD/ (2™ — 1)-PBIB. This notation, however, is not unique because of
possible permutations of the treatments, although the association scheme is
unique. We have to show then that the labeling can be done in such a way that
it is also in agreement with the association scheme iii(a) for the EGD/ (2" — 1)-
PBIB.

This is obviously true for the (y1,7vs, -*- ,%-1,0)th association for all
(7,72, ,vr1) € T, because of the way the treatment notation has been
introduced. The agreement becomes complete if we adjoin the group superscript
to the (v — 1)-plet and denote each treatment by a v-plet (#1,%, -, %-1, %),
where 7, denotes the group G-, the treatment belongs to.

To demonstrate the agreement with the (0, -- - , 0, 1)th association, we have
to show that, following the rules for the EGD/(2"'— 1)-PBIB, two
(0, - --,0,1)th associates can be indexed so that the first (v — 1) components
in their (4,4, - ,%-1,%)-representation are the same. Without loss of
generality we can do this for the first group of (3.1). Consider now ¢ and ¢y,
of the first group in (3.1). Let n be a (v1, - - - , vi1, 0)th associate of ¢y , and
let & be the (0,---,0,1)th associate of » in G». We shall show then
that 6 is also (v1, -, -y;'f_l ,0)th associate of ¢,. Since, by (2.3),
Dyyevyy_10(¥1 -+ ¥5al; 0---01) =N, —1 for all (y1, -, Y1) € Toq, it
follows that all (0, ---,0, 1)th associates of 5 are also (v, -+ ,7vis1, 1)th
associates of ¢ . This holds for all (v1, ---, vy, 0)th associates of ¢y,
M= M,M, 00, Maadend_y0 88y, Now, from (2.1), n(y1 - %a)(N, — 1) =
n(y1 -+ vsal) for all (y1, -+ ,v-1) €T,—y. Hence all (y1, -+ ,vi1,1)th
associates of ¢;; are contained exactly in the groups of (3.1) to which
MyM2, * s Mmeriaio,0  belong. Since  po..o1(y oo val; 1100 10) =
n(y1 -+ v0) forall (y1, - -+ ,v,—1) € T,y , it follows thatall (v1 , - - - , v4—1, 0)th
associates of ¢y, are also (y1,---,vi1,1)th associates of ¢n. Hence
0 =01,0, -, 0u.a%_,0) aTE (1, - ,'yf_; , 0)th associates of ¢12, where
01,02, -, On(al--cys_y0) ATE (01 -, 0, l)th associates of 7, y M2yt Ma(rlerl o100
respectively, in G,. Since this result holds for every treatment and every
(v, *++ , vi—1) € T»_y, and because of the labeling in the first group of (3.1), we
can therefore index the treatments in general so that the components of treat-
ments in the same group of (3.1) are the same except for the 7,-component.
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This then establishes the (0, - - - , 0, 1)th association. Note also that this indexing
does not change, of course, the (v1, - -, ¥»-1, 0)th association.

Finally, we consider the (y¥, - -+, 71, 1)th association ((vF, + + yvea) €
T,_1). To fix our thinking, let ¢ be a treatment in G:. From previous results it
follows that the (vF, - -+, ¥i, 1)th associates of ¢ cannot be in Gi, since Gy
is exhausted in a unique way by the (y1, -+ , v»—1, 0)th associates of ¢. There-
fore consider any other group, G, say, and let A be the (0, ---, 0, 1)th associate
of ¢ in G, . It follows from (2.3) and (2.2) that

Do---0 PG IR o (UL P Ypal) = n(y - - ¥r—10)

for all (v1, ++* ,vs—1) € Th1; L., all (vi, -+ ,75a,0)th associates of A are
also (v¥, -+ ,ve1, 1)th associates of ¢, and they are elements of G only. Since
this holds true for every (0, - - - , 0, 1)th associates of ¢, A = A1, Ay, *++, Aw,1
say, we obtain in this way vy -+ ¥3a0)- (N, — 1), (vF, -+, via, 1th
associates of ¢. But by (2.1), n(y1 - %-10)- (N, — 1) = n(v1 - - ysal).
Hence we have obtained all (v1 , +++ ,vr1, 1)th associates of ¢. Since these
associates are not elements of G, the last component of their (41, %, -+, Typ)-
representation is different from the last component of ¢ inits (41,%, " ,%)-
representation. But these N, — 1 groups of (v¥, -+ ,vr, 1)th associates of ¢
are also (y1, -+ ,%s1,0)th associates of Ai, Az, -+, Ay, respectively.
Because of the uniqueness of the association scheme for » — 1 factors, the
(v¥, .-+ ,v%1,0)th associates of Aw(k=1,2,--,N, —1) differ from A
exactly in the components corresponding to the unity components of
(v¥, -+ ,v%,). From the way the (0, - -+, 0, 1)th associates of ¢ have been
constructed, it follows then that the (4%, - -+ ,vi1, 1)th associates of ¢ differ
from the (4,1, - - - , i»)-Tepresentation of ¢ exactly in the components corre-
sponding to the unity components of (¥, -+ ,vi1,1). Since this holds for
every (v, -+ ,75) € T,y this implies the association scheme iii(a).

This proves the theorem.

The relationship between EGD/ (27! — 1)-PBIB’s and EGDy (2" — 1)-
PBIB’s and their association schemes as established in this proof will be used
frequently throughout Section 4.

4. Properties of NN’ and non-existence theorems. Let 7n4yipe-4,,; = 1 if the
treatment (¢,,7%, - - , %) oceurs in the jth block, and 7,i,...5,,; = 0 otherwise.
The N X b matrix N = (74,...5,.;) is called the incidence matrix of the design.
The v-plet (41,%, - , %) should be interpreted in this connection as one sub-
script. By generalizing the results obtained by Vartak [11], we find that, after a
suitable arrangement of the treatments, the matrix NN’ has the form

A11-~'1,0 A11°'-1,1 LA All--~1,1
(4.1) NN =

All"'l,l An...l'o e All'"l,l

All"'l,l All---l,l e All'"l,o

where Agp-- 10 and Ay - - -1, are symmetric matrices of order N\N; --- Ny,
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the structure of which will be given presently, and there are N, — 1 matrices
Aqi...11 in each row and column of NN’. The number of subscripts of these and
the following A-matrices is ». Equation (4.1) can be written more conveniently
in the form of a Kronecker product as follows

(4.2) NN, = IN,, b3 (Au...l,o et A11...1,1) + JN, X All-'-l,l
where I, is the identity matrix of order N, and J, is a square matrix of order

N, with all elements equal to one. For the matrices Ay...1,0 and Ay;...;; we have
the following recurrence relations

An..ao=Iy,_, % (An..q00 — Aneoa0) + Jw,_y % Aneerao
Ay.ay=1Iy,_, x (An-1,0 — Anean) + Jw,_y % Ao

where Aj..00, As.110, As.q,m and Aj...;q are symmetric matrices of order
NN, - - N, . These matrices can then be obtained iteratively by using the
general recurrence relation

A1...1‘7”,‘+1...7, = INk—l X (A1~~1,0‘yk--vy. bt Al"'l»l‘rk""r-)
+ Ivioy % Ay,

where each of the vi,vi41, -+ ,v,(k =2, ---, ») takes on the value zero or
one, and Ay,y,...y, = M¥1792 -+ + v») . Equation (4.3) means that the A-matrices
have “locally” the same structure as NN'; i.e., each A-matrix consists of two dif-
ferent ‘“‘elements,” one type along the main diagonal and the other type in the
off-diagonal positions. In fact, from a formal point of view it would be more
logical to denote NN’ by A,...; .

To evaluate the eigenvalues and the determinant of NN', we generalize the
arguments put forward by Vartak [11]. Let Dy, be a square matrix of order N,
and of the form

(4.3)

1 1 1 .. 1
1 -1 0 0
(4.4) Dy, =| 1 —2 (k=12 -,
: 0
(1 .- 1 —(N—1)]

Furthermore define a square matrix Hy, of order NiN, - -+ N, by the following
recurrence relation

[Hy,, Hy,, Hy,_, e Hy,_,
Hy,., —Hy,_, 0 cee 0
(4.5) Hy, = | Hy,_, —2Hy,_, :
: 0

| Hy,_, e Hy,_, —(N:— 1)Hy,_, |
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where 0 is a null matrix of order NiN, - -+ N;_; . Equation (4.5) can also be
written as a Kronecker product between Dy, and Hy,_, as

(4.6) Hy, = Dy, x Hy,_,

(k=w»,v—1,---,1) with Hy, = 1. Because of the relationship (4.6), Hu,
behaves almost in the same way as Dy, does. In particular, we find

(47) HyHy, = diag {NiHy,_,,1-2Hy,_,,2-3Hy,_,, -+, (Nx — 1)N;Hy,_,}
where diag {M;, M,, ---, M,} is a matrix which is block-diagonal; i.e., its

diagonal elements are the square matrices M; , M, , - - - M,, and its off-diagonal
elements are null matrices of suitable order. For the further development we
shall also obtain the determinant [Hw,| of Hy, . Using the fact that if U and V
are square matrices of order « and v, respectively, then the determinant of the
Kronecker product W = U x V is given by

(4.8) [W| = |U|” - |V]*
and by applying (4.6) and (4.8) repeatedly, we obtain

k
Hy,| = I 1Dw ™™

i=1
But now ‘
|Dw;| = (—=1)"7'N.!

so that we obtain the following result.
LeEMMA 4.1. The determinant |Hy,| of the matrix Hy, defined by the recurrence
relation (4.6) is given by

(49) IHNkl — ;=Il [(_I)Ni—lN‘!]NINi.

Before stating and proving a theorem on the eigenvalues of NN’, we introduce
a new set of parameters 6 which, later on, will be shown to be the eigenvalues of
NN'.

Consider an arbitrary »-plet v € Ty . Denote the set of its zero components by
05 and the set of its unity components by Q. Let Y., denote the summation
over all v’ € T, with an even number of unity components such that o D ¥,
i.e., 7" has at least zero components in the same positions where v has its zero
components. Here the number zero is to be considered as an even number.
Similarly, let ) ., denote the summation over all ~" & T with an odd number of
unity components such that Q% D 0. Now let v be a v-plet with
2 N oY = 0; i.e., v” and v have no unity components in the same positions.
For any such v” we denote by ».iv” and D_s5” similar type expressions as
> 1. and X s, , respectively, except that the unity components of v” replace
the corresponding zero components of " after the summation according to the
rules given for ) _1.,- and D_s,, has been performed.
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For any v ¢ Ty then define
(@10) 00 = TAW) = TAW) + T a6
v’ 2,7’ Yrel'*

where A(y’) are the parameters of an EGD/ (2" — 1)-PBIB, n(y”) are given by
(2.1), and T™ is the collection of all v” with ¢, N @Y = 0.

We shall now prove the following theorem.

TaEOREM 4.1. The eigenvalues of the matriz NN’ of an EGD/ (2" — 1)-PBIB
are 0(y) (v € Ty), given by (4.10), with their respective multiplicities n(vy) given by
(2.1). The determinant INN'|of NN' is

(4.11) INN'| =TI 6(m)"™.
Telo

(Wi

Ly’

) )
A = 30|

Proor. We shall prove this theorem by induction. For this reason we note
first that the theorem is true for » = 2 as was shown by Vartak [11]. His results
can be put into the form of Equations (4.10) and (4.11) if we replace his 6, , 6, ,
6, and 6; by our 6y , 6w , fae and Oay , respectively. Now suppose the theorem
has been proved for » — 1;i.e., for N* = NiN, --- N,_;. We then have to show
that, as a consequence, it holds also for »; i.e., for N = NyN, --- N,_N, .

To determine the roots of the determinantal equation in 6

INN' — 6Iy| = 0
we consider the expression
(4.12) H, NN — ¢I,JHy, .
Applying (4.2) we can rewrite (4.12) as
Hy NN’ — 6I,JHy, = Hy {Iy, % [(Ar..1.0 — 6Lw/w,)

(4.13) /
— Avon] + Iy, % Ap.pqjHy,
It is easy to verify that for any £ = 1,2, .-+, » we have
HydIn, % [(Artompyrerm — 01) = Apdiyg, i) .
+ Jv % Avtimey o) Hy, = diag {NeHa, [(Av1.0my e, — 61)
(418) + (Ne — DAvtimey o) - Hyoy 5 1-2Ha, [(Arromyyoer, — 61)

— AvtimeyreomHy s 5 2-83Hu, [(Ar 10y, g0, — 61)
= Arrtyren s 0 (Ve — DNHy,[(Arpoyiy gy — 61)
- Al"'1,1‘7k+l"'7v]H;Vk—l}

where I is the identity matrix of order NiN; - - - N;_; . In the light of (4.14) with
k = v, we can rewrite (4.13) and hence (4.12) as
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Hy,[NN' — 0I,JHy, = NHy, ,[(Ar.1o + (N, — 1)Ap.1y)
(4.15) —6Ly/n,JHy,_, + diag[1-2,2-3, --- , (N, — 1)N,]
x Hy, [(A;--10— Apoqy) — OIN/N,]HIIV,_,

where 4 denotes the direct sum of matrices.

We have noted earlier that the A-matrices are of a similar structure as NN'.
In fact, Ay...1,0 is essentially the NN'-matrix for » — 1 factors N1, Na, -+- , N,y
if one only ignores the last component of the \’s after it has been reduced to its
final form by applying (4.3) repeatedly. The same is true for A;...;; . Hence we
can apply Theorem 4.1 to (Ay...0 + (N, — 1)A;...11) and (Ap.qo — Ag.ny)
with the only provision that we have to substitute 8(y1 - - - v,—1) by 6(y1 - - + 75-10)
for the first term, and 6(v; - - - v,41) for the other term for all (y1, - -+ , ys-1) €
To,,—1 , where T'y,,_; is the set of all (v — 1)-plets (y1,%2, - -+ , ¥»—1). This can be
seen immediately from (4.10) and the fact that, by (4.3), A;....,0 reduces to a
matrix with elements X whose »th component is zero, and A;...;; reduces to a
matrix whose elements differ from those of A;...; only in that their »th com-
ponent is one.

Taking the determinant on both sides of (4.15) we obtain

[Hy,INN' — 6IyHy,| = NV [Hy,_,|"
rH (0(71. . 'yHO) — 0)"(71"-%_1)[(N,_l _ 1) !N,,!]N/N'

0sv—1

(16)  -[Hy, L T (00 -+ - yoal) = )7 =)

0r—1

= IHN,|2 rH (0("/1 ‘Y»-—lO) _ o)n(vlmw_lo)

0,y -1
II 6(ys -+ vpal) — )"0

To,p-1

by using (4.9) and noting that n(y; - - - v,—1) for » — 1 factors is the same as
n(y1 -+ v»—10) for » factors, and n(y; - vs) (N, — 1) = n(ys -+ yyul).
Hence (4.16) yields

|NN’ — 0| = 1111 (0(y) — 0)"(7).
€Ty

This completes the proof.

Since NN’ is positive indefinite Theorem 4.1 leads immediately to the following
necessary condition for the existence of an EGD/(2" — 1)-PBIB.

TaEOREM 4.2. A necessary condition for the existence of an EGD/(2° — 1)-PBIB
s that

(4.17) 0(v) 20

for all v € To , where 6(vy) ©s given by (4.10).
To illustrate Theorem 4.2 consider the following example.
ExampLE 4.1. Suppose N = 18 and N; = 2, N, = N; = 3. Let b = 9,k = 4,



GROUP DIVISIBLE PBIB DESIGNS 691

r = A(000) = 2, and A(100) = 2, A(010) = 1,A(110) = 0, A(001) = 1, A(101)
= A(011) = X(111) = 0. Then 6(000) = 8, (100) = 4, 6(010) = 5, 6(110) = 1,
6(001) = 5, 6(101) = 1, 6(011) = 2, 6(111) = —2. Because of 4(111) = —2,
Equation (4.17) is not satistied. Hence the PBIB does not exist.

A necessary condition for the existence of a symmetrical EDG/(2" — 1)-PBIB
with [N| s 0 can be derived from the fact that if |N| > 0 then |NN'| = |N|?
is a perfect square.

TreEorREM 4.3. A necessary condition for the existence of a symmetrical
EGD/(2° — 1)-PBIB with a mnon-singular incidence matriz N s that
ILvero 6(v)™™ s a perfect square, where 8(v) is given by (4.10), and n(y) is
given by (2.1).

To illustrate Theorem 4.3 consider the following example.

ExampLe 4.2. Suppose we have a symmetrical PBIB with N = 24, N; = 2,
N, =3,N; = 4. Thenb = 24. Let r = k = 4, and A\(100) = 2, A(010) = 1 =
A(110) = A(001) = A(101), A(011) = 0 = A(111). The determinant |NN’|
is then given by

INN'| = 16-2-10%.2°.8%.2%.2°.2°

which is not a perfect square in contradiction to Theorem 4.3. Hence the PBIB
does not exist.

To prove next a theorem on the Hasse-Minkowski invariant c,(NN') of NN'[2]
we note first the following results for the ¢, invariants of the direct sum and the
Kronecker product of matrices (cf. [1] and [10] respectively).

If P and Q are symmetric matrices with rational elements whose ¢, invariants
exist and if U = P 4 Q is the direct sum of P and Q, and V = P x Q the
Kronecker product of P and Q, then

(4.18) ¢s(U) = (=1, —=1)5c,(P)en(Q) (P, [Q])»
and
(V) = (=1, =1)57 e, (P)]"[en(Q)]™
(1P, =13l =13 (P, |QDZ™™

where m and n are the orders of P and Q respectively, and where (a, b), is the
Hilbert norm residue symbol of the non-zero rational numbers ¢ and b [4]. If
Q is a non-zero rational number, A say, then (4.19) reduces to

(4.20) &(AP) = ¢,(P)(A, =15, [P

For future reference we now state the following result.

Lemma 4.2. If L, D, and R are symmetric matrices with rational elements and
of order 1, d and r, respectively, whose c, tnvariants exist, and if p is a non-zero
rational number, then the c, invariant of the matriz

(4.21) W=,LiD xR

(4.19)
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s given by
¢o(W) = (=1, =1)%,(L)lep(R)I*(p, —1)5" (D], —1)5" V"
(4.22) (IR}, =DZ*(ID|, [R5 (L], D)5 (L], IR])S
“(p, IL1)3 (o, D)3 (o, IR])5-

The proof follows immediately by using (4.18), (4.19), (4.20) and the well-
known properties of the Hilbert norm residue symbol (¢f. [3], [6]).

Before stating the main theorem on the ¢, invariant of NN’, we introduce the
following notation. For any »-plet ye¢T let ¢ be the »-plet with e =
1 —9i(¢=1,2,---,v). Furthermore, for any v ¢ T let
(4.23) m(y) = H N;

Tel(7)
where /(y) was defined in Section 2, and let m(0) = 1, where 0 = (0 --- 0).
Finally, let k() be the number of unity components in v for any v ¢ T.

We are now in a position to prove the following theorem.

TuEOREM 4.4. The Hasse-Minkowski invariant c,(NN') of the matriz NN’ of
an EGD/(2" — 1)-PBIB whose eigenvalues 6(y), as given by (4.14), are positive
for all v € Ty is of the form

¢p(NN') = (=1, =1),(6(0), —N), JIP (m(€)6(0), ()"

. _1\3In(M[Z*N;—2(k(7)-D)]
(4.24) II (6(n), =13
1 IT (ecy), Ny ™0 IT [IT* (6", 6(v”)) 1™
YeT 1eI(7) Yel .

where n(y) and m(vy) are defined by (2.1) and (4.23) respectively, k(y) and I(v)
are as stated previously, [[* denotes the product over all pairs of v-plets v, v" with
v # v such that @57 U Q) = Q5°, and Y * denotes the summation over all i € ().

Proor. We shall prove this theorem by induction. The theorem is true for
v = 2. This has been shown by Vartak [11], and his result can be put into the
form of (4.24) if we substitute his 6, , 6;, 6; and 6; by our 6(00), 6(01), 6(10)
and 6(11), respectively. Now suppose the theorem is true for » — 1; i.e., for
N* = NiN, -+ N,_;. We then have to show that it holds also for »; i.e., for
N = N1N2 e Ny—-lNyo

Let NN’ be the matrix under consideration for the EGD/(2° — 1)-PBIB.
We note first that Hy, NN'Hy, is rationally congruent to NN’ since Hy, is non-
singular as a consequence of (4.9). Then by the Hasse-Minkowski theorem [2],
we have ¢,(NN') = c¢,(Hy,NN'Hy,). From (4.13) in connection with (4.14)
it follows that Hy NN'Hy, can be written as

HyNN'Hy, = NHy, [Ar.a0 + (N, — 1)As..q1Hy,_,

(4.25) = /
+ diag[1-2,2:3, -+, (N, — 1)N,] x Hy,_,[A1..00 — A Hy, .
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We notice that (4.25) is of the form (4.21) with
L = Hy, ,[As..00+ (N, — 1)Ay.q4Hy, _,,
D = diag [1-2,2:3, -+, (N, — 1)N,},
R = Hy,_[Ar.10 — Ay.qalHy,_,

withl =r=N;---N,1.,d =N, —1l,andp = N,.

We have mentioned earlier that the A-matrices behave in the same way as the
matrix NN’, and so therefore does any linear combination of A-matrices. Since
L and R are of the order N;; - -- N,_;, it follows then that (4.24) is true for
L and R. However, by applying (4.24) to L and R we have to modify the formula
by substituting (y1 - -+ ¥,—0) for 8(y1--- v,—1) in L, and 0(y; - - - v,-11) for
0(y1 -+ vs—1) in R for every (1, v2, *** , Vs=1) € I'o,»—1 . This can be seen from
the form of L and R and the derivation for the general expression of the eigen-
values. We now can apply (4.22) to (4.25). In doing so we note again that
n(yy -+ v,-1) for EGD/(2" — 1)-PBIB is the same as n(y; - -+ v,40) for an
EGD/(2" — 1)-PBIB with the same factors Ny, N, -+, N,y . The same is
true for the parameters m and k. Also, n(y1 - -+ v»—1) (N, — 1) = n(y1 - -+ y5l).
We then obtain (omitting the p-subscript for convenience)

¢s(NN') = (=1, —=1)(6(0 --- 0), — Ny --- N,y)
I (m(er -+ €-10)6(0 -+ 0), 6(y1 - -+ ¥,—a0) ) """ 7 10

I‘»v-l

“II (8(71 - -+ 7,mi0), —1)Fn0ver V1O [EEN=2E L7y 102D
— b

rv—l

n(y1ee vy -10)/(N;-1)
. (0(71 e 'Yy—10), N.~) 10 Yv—1 A
Ty_1 teI(Vy+++7,_10)

’ H [H*(G('y{ cee 'yf,_]O), 0(7;’ “ee 72’_10))]”(71---%_10)

Pv—l

“JI (m(e -+ €10)6(0 <+ 0), 8(y1 - - - ypal)) "MV

rv--l

TI (8(yn -+ - yual), —1)F0v e raDIES N2 (17,1011
(426) 1,0,

(0(71 ey 11) N.)n(n»-w,_;l)/(m—n
v—11), IV;
)

Ty_1 teI(Y1-+7, 10

) II [H*(G('yi <o 7:_11), 0(7;’ ce 'yf_ll))]"(“’"""’”-ll)

T,o1
(rH 0(y1 -+ + Ypal) "0 ) By
01
' (N" ) I‘H 0(71 v 7v—11)n(71”'VV—10))
0y —1

(IT 0 70e0)™ ™=, )

0y—1

. (PH 0(71 T 7”"10)7‘(71“'7”—10)’ I‘H 0(71 e 7!‘—11)"(71“.7,_10))1%—1

0,y —1 0.y -1
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where D_** denotes the summation over all 7 & I(y; - - - v,10), and J]* has the
same meaning as in Equation (4.24). Here we have used various properties of
the Hilbert norm residue symbol and the fact that

(N,, — DIy ey g,

To obtain |L| and |R| we have used (4.11) with the appropriate substitutions.
One can then verify that, after some manipulations, (4.26) reduces to (4.24).
This completes the proof.

Note that the actual range of the last product in (4.24) is I’ = {T minus all v
with only one unity component}, because of the conditions imposed on v and
~", and because of 6(0) = r*and (+%, 8), = +1.

We now observe that

NN’ = NI,N/,

i.e., NN’ is rationally congruent to Iy if N is non-singular. Since ¢,(Iy) = +1
for all odd primes p, this leads to the following necessary condition for the exist-
ence of symmetrical EGD/ (2" — 1)-PBIB’s with non-singular incidence matrix N.

TaEoREM 4.5. A necessary condition for the existence of a symmetrical
EDG/(2" — 1)-PBIB with |N| # 0 s that ¢,(NN') = +1 for all odd primes p,
where ¢,(NN') is the Hasse-Minkowski invariant of NN’ given by (4.24).

To illustrate Theorem 4.5 consider the following example.

ExampLE 4.3. Suppose we want to construct a symmetrical EGD/7-PBIB
withN = 45,N; = N, = 3,N; = 5. Let k = r = 9,and A(100) = 5, A(010) = 5,
A(110) = 3,A(001) = 4,A(101) = 2,\(011) = 1,A(111) = 0. From (4.10) we
obtain (000) = 81, 6(100) = 24, (010) = 36, 6(110) = 6, 6(001) = 31,
9(101) = 4, 6(011) = 1, 6(111) = 1. Applying (4.24) we find ¢,(NN') =
(6, —3), . For p = 3 this becomes

cs(NN') = (2, =3)s(8, —=3)s = (2, —1)s(2, 3)s = (2/3) = —1,

where (2/3) is the Legendre symbol. Therefore the condition of Theorem (4.5)
is not fulfilled. Hence the PBIB does not exist.

5. Example of an existent EGD/7-PBIB. Suppose N = 24 with N; = 2,
N; = 3, N; = 4. The treatments are denoted by

(111)  (112)  (113)  (114)
(211)  (212)  (213)  (214)
(121)  (122)  (123)  (124)
(221)  (222)  (223)  (224)
(131)  (132)  (133)  (134)
(231)  (232)  (233)  (234)

Take k = 3, b = 32, r = 4 = A(000), A(100) = 0, A(010) = 1, A(110) = O,
A(001) = 1 = A(101), A(011) = 0 = A(111). The plan of the design is then as
follows:
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[(11), (u12), (213)] [(181),  (132),  (233)]
[(112),  (214), (113)]  [(132),  (284),  (133)]
[(113), (111), (214)] 1(183),  (131),  (234)]
[(114),  (212), (111)] [(134), (282),  (131)]
[(e11),  (114), (112)]  [(231),  (134),  (132)]
[(212),  (113), (114)]  [(232),  (133),  (134)]
[(213),  (211), (212)]  [(233), (231), (232)]
[(214),  (213), (211)]  |(234), (233),  (231)]
[(121), (122), (223)] [(111), ~ (121),  (131)]
[(122), (224), (123)] [(112),  (122), (132)]
[(123), (121), (224)] [(113),  (123),  (133)]
[(124), (222), (121)] [(114),  (124),  (134)]
[(221), (124), (122)] [(211),  (221),  (231)]
[(222), (123), (129)] [(212), (222), (232)]
[(223), (221), (222)] [(213), (223), (233)]
[(224), (223), (221)] [(214), (224), (234)]
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