SOME STRUCTURE THEOREMS FOR STATIONARY PROBABILITY
MEASURES ON FINITE STATE SEQUENCES'

By CuarLes HoBBY aND N. DoNALD YLVISAKER
Unaversity of Washington

1. Introduction. Given a stationary probability measure P on doubly infinite
sequences over finitely many states, there are measures P, induced on n con-
secutive coordinates. These measures P, are again stationary to the extent that
stationarity requirements are satisfied over subsets of n consecutive coordinates.
Conversely, given a family of such “stationary’’ measures {P,} which are con-
sistent, there is an induced stationary measure P on infinite sequences. Generally,
given a fixed P, , there are many stationary measures P which reduce to P, .
We shall consider the restrictions imposed on P by choosing P, . In the main,
our results relate the growth of the number of elements in the support of P4
to the choice of P, .

In Section 2, we state some basic properties of these support numbers. De-
terministic measures are defined and the structure imposed on P by a
deterministic measure P, is noted. In Section 3, beginning with a fixed P, , we
consider certain extremal measures P which reduce to P, and show that there is
always a deterministic measure P which reduces to P, . In Section 4, we examine
the largest possible growth of support numbers for a fixed P, . An example is
given of a measure P which has the property that its restrictions P, are concen-
trated on precisely n + 1 vectors.

2. Preliminaries. Let X" be the nth Cartesian product of the set
X =1{0,1,---,q — 1}, let X" be the space of doubly infinite sequences {X(n)}
whose coordinates take values in the set X and let @ denote the o-field of subsets
of X’ generated by the cylinder sets. Given a stationary probability measure P
on (X', @) we induce a probability measure on X" by restricting P to sets of the

form {z(1) = z;, ---,z(n) = z,}. This restricted measure will be denoted by
P, and usually abbreviated by writing
Pa(r, =+, 20) = Plz(l) =z, -+, 2(n) = za}.
For each choice of 7, these measures satisfy
q—1
pn(xl’ e, Tp) = 2:0pn+1(x0;x1’ “te, Ta)
o=
(*)
a1
= Z pn+1(xl y "y Ty xn+l)
Znp1=0
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forallx = (a1, -+, z,) ¢ X". Conversely, if we are given a family of measures
{P,} on X" which satisfy () for each choice of n, it follows from the consistency
theorem that a stationary probability measure P is induced on (X', @) and
that the restrictions of this P are the measures P, .

Given a stationary probability measure P on (X', @), we let N,, be the number
of elements of X" in the support of P, . That is, N, is the number of x ¢ X" for
which p.(x) > 0. We clearly have 1 < N, < ¢"and Noym < N,N,, . It is also
easy to show that N, £ N,y andif N,yy = N, , then N,y = N, forall kb = 1.
For the special case N, = N,,1, we make the following

DerinitioN 1. The stationary probability measure P on (X', @) is said to
be n-deterministic if N,—y < N, = N,41, and is said to be non-deterministic if
it is not n-deterministic for some 7.

An n-deterministic measure P must consequently be concentrated on at most
q" infinite sequences. This structure is summarized in

TuroOREM 1. If P is an n-deterministic stationary probability measure on (X, @),
there is a subset B of X' containing at most q™ sequences, each of which s periodic
of period at most q", with P(B) = 1.

The existence of n-deterministic measures P which are supported on sequences
of period ¢" is shown in another context by. Good [2].

3. Extensions. We begin here by considering measures P, on X* which are
restrictions to X* of stationary probability measures on (X’, @). These restric-
tions satisfy equations of the form (%) where P, is the restriction of P; in turn
to sets of the form

{(1) =21, -+ ,2(n) = z,}, n < k.

DerintTiON 2. The restriction P,y of a stationary probability measure P is
said to be an extension of P, if P, is the restriction of P, to X™.

It should be noted that restriction always refers to cylinder sets on consecutive
integers.

Every solution of the equations (*) gives an extension of the restricted measure
P,. We consider first two special ways. of constructing an extension P,y .
(These extensions will, of course, agree if N,y = N,.)

(a) A Markov type extension. For each (zz, -, z,) in the support of P,_;,
we define

pﬂ(xl, ) xn)pn(x% ) xﬂ+1)

x DR x ) 3
p”+1( 1, y “ntl pn—l(zh e, xn)

This extension gives the largest possible value of N4 .

(b) A minimal extension. For each (z., -+, z,) in the support of P, , we
wish to assign probabilities pn41(21, -+ , Tnsa) so that P,41 is an extension of
P, . Let N,,,... 2, be the number of choices of z,41 for which pa(z2, -+ , Znt1)
> 0 and let NJ,....., be the number of choices of z; for which pa(z1, -+ , Za)
> 0. Nonzero probabilities can be assigned only to the Na, ...z Ny - -1z
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elements of the form (21, -, Zzt1) for which both p,(z:1, ---,z.) > 0 and
P2, ++ , Tuy1) > 0. We must satisfy the equations
q—1
Zopn+l(xl y Ty xn+l) = pn(xz y T x”-‘-l)
z1=
q—1
Z . pn+1(x1 y T, xn+l) = Pn(xi; e 7xn)'
Tpy 1=
These equations are precisely the transportation problem equations of linear
programming with the interpretation that an amount p,ii(zi, <« -, Toq1) is
sent from the origin (z;, -+, z,) to the destination (z:, --- , 2.41), (cf. [3],

p. 274). In this context it is known that there are non-negative solutions with at
most No,,... .z, + Nay,...s, —1 nonzero choices. Choose then an assignment with
the minimum number of positive choices. It follows that
Now = 2 (Negooo g + Niyoooy = 1) = 2N, — Ny
Prr G Ty > 0
and consequently N,y — N, < N, — N,y .

Each of the extensions described above gives a method of extending a measure
P, to a stationary probability measure on (X’, @). The Markov extension gives
a measure which is n-step dependent. It is not known whether a repeated minimal
extension must terminate the growth of N, at some future stage. However, we
shall see later (Theorem 3) that every measure P, does have a deterministic
extension.

We examine first the conditions a set S of vectors must satisfy if they are to
form the support of some P, . Consider the mapping ¢ of S to S defined by

¢s(x1,$2, o ’xn) = (x2)x3) et yxn+1)'

The mapping yg is at most ¢g-valued. Furthermore, it follows from the recurrence
property of stationary measures applied to an extension of P, to (X', @) that
x & Uiso (¥kx} for all x £ S. In particular, if the sequence X = Xo, X1, -+ , Xx,
Xy11 = X consists of distinet x; and if x;,1€ {¢sx;} for ¢ = 0, --- , k then the
subset 8* = {x, X1, - -+, X} of S is the support of the measure Ry defined by
pa(x;) = 1/(k+1),4= 0,1, -,k It iseasy to see that the equations ()
hold for Pj. We say that a subset S of X" is minimal if S supports some P,
while no proper subset of S supports any P, .

Lemma 1. If the subset' S of X" is minimal, then S supports a unique measure
P.(8). The measure P,(8S) is k-deterministic, k < n — 1, and it assigns a con-
stant measure over S.

Proor. We see from the minimality of S that any sequence x = X, %1, - - -,
X, Xpp1 = X with ;1 e{Ysxd, 7 = 0, 1, - -+ , k, must contain all of S. If for
some ¢ < J, X;ju € {¥sX;} then the subsequence x = X, -+ ,X;, Xjp1, ***,
X: , Xx41 = X has the property that each element is ys of its predecessor. This
would give a proper subset of S which could support a measure P, , contrary to
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the minimality of S. Therefore x;,1 & {¢sx;} for ¢  j, whence any P, supported
on S is k-deterministic, ¥ < n — 1. It follows easily that such a P, assigns con-
stant weight tox,,7 = 0,1, --- , k.

The unique measure P,(S) will be called a minimal n-measure. Corresponding
to P,(S) there is a uniquely determined measure P(S) on (X', @). We shall
now show that any measure P, can be decomposed as a convex combination of
minimal n-measures.

TaroREM 2. If P, is the restriction of a stationary measure on (X', @) then
there are minimal n-measures P,(8S.), @ = 1, , N corresponding to minimal
subsets Sy of X" such that Pp = D meihaPn( Sa) 'where)\ > 0and X oveihe = 1.

Proor. Let x = X¢,X%;, -, Xx, Xs41 = X be a sequence drawn from the sup-
port S of P, as before and suppose this sequence has minimal length for all such
sequences with x & S. The set S = {X, X1, -+ , X} is clearly minimal. Let p
denote the smallest of the numbers p,(y) for y € Sl Define P} by the equation

P, = (k4 1)pP.(8) + (1 — (k + 1)p) Px.

The measure P satisfies (%) since both P, and P,(S;) do. The support of P}
does not contain any element y of S; for which p.(y) = p, hence is a proper
subset of the support of P, . The existence of the required decomposition now
follows by induction on the size of the support of P, .

The fact that every measure P, has a deterministic extension is an immediate
consequence of Theorem 2. We state the result as

TuroreM 3. If P, is the restriction of a stationary measure on (X', @) then
P, is the restriction of a measure P of the form P = > 1 AP (8Sa), where A\,
> 0and X %_1\a = 1, and where the P(S.) are the unique extensions of minimal
n-measures.

We note that the representation of P in Theorem 3 implies that P is (n + k)-
deterministic if % is the smallest value for which the P.1:(S.) are supported on
mutually disjoint subsets of X™**. This must occur for some k =< max.S. — 1
where S, is the number of vectors in S Smce each S, corresponds to an at
most (n — 1)-deterministic measure, S, < ¢" ™, and hence k < - 1. That
is, P, has an extension P which is (n + Ic) determlmstlc forsomek < ¢ — 1.
There are, in fact, minimal n-sets of ¢" ! vectors, one corresponding to each
(n — 1)-deterministic measure of the type constructed by Good. Indeed, they
are quite numerous (cf. [1]).

4. The growth of N,. In this section we shall examine the effect of a fixed
measure P, on the growth of the sequence {N.i«}. Two extreme possibilities
will be considered.

The Markov type extension of the fixed measure P, has the property that it
maximizes N, over all extensions Pn4x of P, . If P, is such that N, = ¢", a
Markov extension gives N, = ¢"** for all k. A more interesting problem arises
when N, < ¢" for here there are impossible sequences, each of which leads
separately to many impossible sequences at higher stages.
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Let X1, - -+ , Xn, be the elements of X" in the support of P, . Let A be the
N, X N, matrix of elements a;; where

a:; = 1 if there is an element of X™** beginning with x; and ending with x;,
= 0 otherwise.

The 7th row sum of A is the quantity Ny, in the first Markov extension while the
jth column sum is N;",. . The behaviour of 4 is similar to that of a 1-step transi-
tion matrix for the Markov extension. In particular, the 7, jth element in 4"
is the number of elements of X"**~! beginning with x; and ending with x; and
we have N,y = 1A* 1 where 1’ = (1, - -+, 1). This observation enables us to
find the limiting value of (log N,)/n for the Markov extension in terms of 4.
This limiting behaviour is suggested in [4], p. 8 but we give a detailed proof here.

TuroreEM 4. For the Markov extension, {Nn.44} satisfies a recurrence relation
which is the minimal equation of A, and lim,, (log N,)/m = log N\ where \ is the
largest real eigenvalue of A.

Proor. A satisfies its minimal equation and the equation remains valid if we
multiply by A*™. Multiplying this equation on the left by 1’ and on the right by
1, we obtain the recurrence relation satisfied by the N,1.’s. To obtain the second
conclusion, suppose first that 4 is indecomposable. By the Frobenius theorem,
if A is the spectral radius of 4, then X is a simple eigenvalue of A and has an
associated positive eigenvector u. There exist positive numbers ¢ and d for which
cu = 1 £ du. Consequently

AR = AF £ 174M < d%W/ AP = &N,
and therefore

klog A

log ¢ +klog)\<log Nur log d’
n+k°

n+k nt+k” nt+k Tnt+k

The conclusion is then immediate when A is indecomposable. If A is decompos-
able, x;, - -+ , Xn, can be separated into equivalence classes of communicating
states. The matrix A will contain an indecomposable submatrix corresponding
to each of these equivalence classes. A suitable rearrangement of x; will transform
A into a block diagonal form where each block on the diagonal corresponds to
one of the equivalence classes and hence is indecomposable. If these diagonal
blocks are, say, Bi, Bz, -+, B,, then

+

N, = 2> 1Bi,
=1

where 1’ represents a vector of 1’s of appropriate length. We may suppose that
), the largest positive eigenvalue of 4, is an eigenvalue of B, . Then

Na.w = U'B¥1.(1 4+ X 1'Bi1/1'B}1).
=2
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Since the second factor is bounded, (log N,4z)/(n + k) — (log 1’ Bi1)/(n + k)
— log X. This completes the proof.

We appeal to the construction of a minimal extension of P, to X" to con-
struct an example of a nondeterministic measure P on (X’, @) for which N, <
Nay and N,y — N, is bounded. As noted previously, it is possible to extend
P, to P,y with N,yy — N, £ N, — N, . If this procedure is repeated, N,
— Npyt1 = N, — N, for all k. We shall construct an extension in which
Nn+k - Nn+k—1 = Nn - Nn—l-

Since our object is to show the existence of nondeterministic yet small ex-
tensions, we consider the case of states 0 and 1 alone. A similar construction can
be given for ¢ states.

In constructing P, from P, we start with x = (21, - - , Z,—1) in the support
of P,_;. The numbers Ny and Ny then denote respectively the number of
Pa (%,0), pa(x, 1) and p,(0, x), p.(1, x) which are positive, where we use the
notation (x,0) = (21, -+, &n, 0), etc. Now if Nx + Ny = 2, exactly one of
the probabilities p,41(0, X, 0), Pr1(0, X, 1), Pnia(1, X, 0), and pra(1, X, 1) is
nonzero. If Ny + Ny = 3, the probabilities p,41(7, X, 7), for 7,7 = 0, 1, are again
determined with exactly two of them being nonzero. In the case Nx + Ny = 4,
we want to find conditions under which precisely three of these probabilities may
be made nonzero. We have

(0, %) + pa(1,x) = pa(x,0) + pa(x, 1)
and we must satisfy the three equations
Pn11(0,%,0) + Pata(0, %, 1) = pa(0, x)
Pa41(0, X, 0) + puia(1, X, 0) = pa(x, 0)
Pns1(0, X, 1) + paa(1, X, 1) = pa(x, 1).

If pa(0, X) = pa(x, 0) = pa(x, 1) then pata(0, X, 0) = paja(1, X, 1) and pasa
(0, %, 1) = pnta(1, x, 0) so that it is not possible in this case to have three non-
zero choices. In all other cases it may be checked that such a choice is possible.

There is consequently the possibility of an extension with N,y — Napji1 =
N, — N._forall k > 0 if whenever N; + N3 = 4, p(0, x), p(1, x), p(x, 0) and
p(x, 1) are not all equal.

Consider now a measure P; on X' defined by p;(0) = b, p1(1) = 1 — b, b
irrationaland 3 < b < 1.

THEOREM 5. P has an extension P on (X', @) for which N, = n + 1.

Proor. We proceed by induction to show that Pj_; has an extension P; with
Ni=k+ 1,k =23,---.Let P, be defined by p(0,0) = 2b — 1, ps(0, 1)
= p2(1, 0) = 1 — b. P, is an extension of P; and N, = 3. Suppose then that
Py_1 has an extension P, with N, = k + 1, k < n. Let x and x* be the (unique)
elements in the support of P,_; for which

Pa(X, 0)pn(x, 1) > 0 and p,(0, X*) pa(1, X*) > 0.
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If x # x*, Ny + N} < 4 for all x’ in the support of P,—;, thus there is an ex-
tension t0 Pn41 With Nayy = n 4+ 2. If x = x* there is such an exten-
sion unless p,(0, Xx) = p.(1, X) = p.(X, 0) = pa(x, 1), so suppose this to
be the case. We know from Theorem 2 that P, has a decomposition as P, =
¥ eAaPn(8a) for certain minimal subsets S.. Note that each minimal subset
S. must contain one (but not both) of (x, 0), (x, 1). For if Sg, say, contains
neither (x, 0) nor (x, 1) both of them will appear in U, S. . But the residual
measure on this union is supported by at most n elements, hence must be k-
deterministic, ¥ < n — 1. This is a contradiction since such a measure cannot
contain both (x, 0) and (x, 1) in its support. The same contradiction is obtained
if one of (x, 0), (x, 1) is in both Sg and UaxsSa . Therefore the decomposition
of P, is obtained from two minimal subsets, say S;, Sz, where (x, 0) € S; and
(x, 1) £ S, . Furthermore, if p = pa(x, 0) = pa(x, 1), then p,(y) = p for every
y in the support of P, . Suppose S; contains k + 1 elements. Then

In particular, p = pa(x, 1) = [1 — p(k+ 1)]-1/(n — k) since (x, 1) £ S1.
Therefore p = 1/(n + 1). Since P, is supported by n + 1 elements, this gives
pa(y) = 1/(n + 1) for every y in the support of P, . Adding the probabilities
of all n-vectors with first coordinate zero must give b, so b = r/(n + 1) for some
integer r, a contradiction.
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