RADON-NIKODYM DERIVATIVES OF STATIONARY
GAUSSIAN MEASURES

By Jack Caron
Applied Research Laboratory, Sylvania Electronic Systems

1. Introduction and summary. A problem of considerable importance in time
series analysis is that of determining whether two Gaussian processes are equiva-
lent, i.e., mutually absolutely continuous with respect to each other. If we are
given {Q, @, Pi}, k = 0, 1, where Q is a set of real valued functions on some
interval [a, b], @ is a Borel field of subsets of @ and P; is a Gaussian probability
measure on @, then the problem is to determine the conditions under which P, is
equivalent to P; . Feldman (1958) has shown that a certain dichotomy exists in
this problem in the following sense. If Q is a linear space, then either Poand P; are
equivalent or they are perpendicular, i.e., mutually singular. In addition, Feld-
man (1958) has shown, using some results of Segal (1958), that if A is the linear
span of @ and the real constants, then Py and P; are equivalent iff the Po-equiva-
lence classes of A are the same as the P-equivalence classes of A and the identity
correspondence between the Ly(Po) closure of A and the Ly(P1) closure of A is a
bounded invertible operator 7' such that (T * 1)t — I is a Hilbert-Schmidt
operator.

It is well known that a Gaussian process, and hence its probability measure, is
uniquely determined by its covariance function, R(s, ), assuming, of course,
that the mean value function is zero. It should, therefore, be possible to deter-
mine when P, and P; are equivalent in terms of the covariance functions of the
two processes, Ro(s, t), Ri(s, t). Indeed, it is desirable to have a theorem which
states the conditions for equivalence of Py and P; in terms of the covariance
functions, since in most applications the only information concerning the Gauss-
ian processes consists of the covariance functions. In thissense, Feldman’s (1958)
theorem is in a form which is not too suitable for practical applications. This
situation has been corrected by Feldman (1960) who, using his earlier results,
has given the necessary and sufficient conditions for equivalence of Po and P; in
terms of the covariance functions for a rather wide class of stationary Gaussian
processes with zero mean value functions. However, Feldman (1960) has not
computed the Radon-Nikodym derivative (RND) dP;/dP, for pairs of equiva-
lent Gaussian processes. The RND, or likelihood ratio, is of considerable impor-
tance in statistical inference for stochastic processes, as is well known.

Recently, Parzen (1961), (1962) has described a new approach to time series
analysis which is based on the notion of a reproducing kernel Hilbert space
(RKHS). The theory of RKHS has been given by Aronszajn (1950). Using
some results due to Aronszajn (1950) and H4jek (1958a), (1958b) Parzen (1962)
has derived a necessary and sufficient condition for equivalence of pairs of Gauss-
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ian processes which have the same covariance function but have different mean
value functions. In addition, he gives an explicit expression for the RND asso-
ciated with pairs of equivalent Gaussian processes.

The present work stems from a desire to derive the necessary and sufficient
conditions for equivalence of pairs of stationary Gaussian processes with different
covariance functions and zero mean value functions and to compute the RND
for pairs of certain equivalent Gaussian processes. The method of proof is based
on the RKHS approach used by Parzen. Thus, part of the results obtained will
serve as an alternate derivation of Feldman’s (1960) result. However, Feldman’s
proof involves a large number of complicated manipulations, while the present
proof has the advantage of requiring only a few elementary manipulations. This
simplification is achieved by employing convergence theorems of Aronszajn
(1950), Héjek (1958a), (1958b) and Hoérmander (1963) and an expression for
an inner product due to Parzen (1961).

2. Definitions and assumptions. Let @ be a set of real valued functions on
some interval [a, b], @ is a Borel field of subsets of @, and let {X(¢),a = ¢ < b}
and {Y(¢), a = t < b} be two stationary Gaussian processes, with zero mean
value functions, with probability measures P, and P; determined by their respec-
tive covariance functions Ro(s — ), Ri(s — £), a < s,t < b. We assume through-
out that Ry(s — ¢) is continuous at s = ¢, k = 0, 1. We have by Khintchine’s

theorem
(2.1) Ri(s — ) = (20)™ f exp (iw(s — £)) Gy,

where Gy (w) is the spectral distribution function and is monotone non-decreasing
and of bounded variation, and where the limits of integration of all unspecified
integrals are — « and . It will be assumed that Gx(w) has an absolutely con-
tinuous component, with density gx(w), where the spectral density function
gx(w) is nonnegative. Since G has a component which is absolutely continuous,
it follows that Rx(s — %) is positive definite.

Let Tdenote the closed interval [a, b, & = a + k(b — a,)/N N=2"n=1,
2,k = , N, and for any finite subset Ty = {t;, -+, tv} of T let
Poy and Py denote the probability distributions of {X (¢), t & T'x} under Py, Py,
respectively. The assumption made concerning the continuity of the cevariance
functions assures that the processes under consideration, or some standard
modifications, are separable and measurable, c¢f. Doob (1953), p. 518. Now, for
Gaussian processes Poy, Pix are mutually absolutely continuous with RND

denoted by
Py = dPiy/dPoy = (20) ™" |Qun|™ exp(— 1% Riny)/

2.2
( ) (21!’)—N/2 I(RONI_} exp( —lfo(R E)CN)

(2.3) Inpy = 3(In |Rox|/|®ev| + Ly ((BON — ®iy)Lw),
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where the matrices X , Row , Rux are defined as

(24) Xy = [X(:tl)-’ I—Xl )

el L

Ri(ty — 1) -+ Ri(ty — tw)
(25) Ry = e ) k= 07 1’
Ri(ty — t1) -+ Ri(ty — tn)

—_ . . . ’
and Ry denotes inverse matrix, |®Ry| denotes determinant and %y denotes

transpose matrix.
The divergence between Py and Py is defined as

Jxy = Ei(In py) — Eo(In py)
= 1E(Xn(®ow — ®in)Xw) — 3Eo(Xn(Ron — Rin) Lw).

It was pointed out by Héjek (1958a) that 0 < Jy < Jy», if N < N*. Conse-
quently, the limit J7 = limity.. J» exists and is finite or infinite. In addition,
Hi4jek (1958b) has shown that P, and P, are equivalent or singular depending,
respectively, on whether Jy is finite or infinite, and if Po and P, are equivalent
the RND is given by dP;/dP, = limity.. p» . We will use Héjek’s results to
determine necessary and sufficient conditions for equivalence of Py, P; and to
compute the RND.

Since both Ro(s — t) and Ri(s — t) are positive definite, the matrices Qo ,
®Rux are positive definite. Therefore, there exists a nonsingular matrix €y such
that, c¢f. Anderson (1958), p. 341,

M1 O 0
0 Ayz - 0
= = Ay

(2.6)

(27) CiRmey = ‘
[ 0 0 .-+ My J
" 10 --- 0
(2.8) ehomey = |01 0L g
LO 0 --- 1
where Ay1 < - -+ < Aww are the eigenvalues of the matrix equation
(2.9) Rov £ = A Ruy X,

and are all positive.
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Let Yy = Cy%y, so that
Iy = 3E(YnCH (Ror — ®mw) (Cn) 'Yw)
—3Eo(YnCr (Ron — Rin) (Cw) " Yw)
(210) = 1E(Yn(AR' — In)Yn) — 3Eo(Yn(AR' — In)Yw)

N
3 Zl Owi — 1)/ Awi .

It is easily seen that Jy approaches a finite limit iff Ay is bounded uniformly
away from zero, i.e.,

(2.11) limit,v.,w >\N1 > O,

and limity.e 2 1= (Aws — 1)*is finite. It should be noted that, due to the varia-
tional properties of eigenvalues, {Ay1} is a nonincreasing sequence so that limitx.,
A1 exists.
LemMaA 2A. A sufficient condition for limity.. Av1 > 0 48 go(w)/g1(w) — 8 > 0,
w—> o, and dG, = dw/(1 + ), u 18 an integer greater than or equal to unity.
" Proor. Let Y1, - -+, Yyn denote the elements of the matrix Yy . We have
Ey(Y%) = 1,all N, and Eo( Yi1) = Am. However, since Yy = D i 1 X

we obtain
N

N
(2.12) E1(Y12v1) =L ;1 cricuX ; Xy = ;1 crjeuwla(t; — &) = 1,
2= J18=.

and similarly

N

(2.13) ~kZ:1 crjcuwRo(t; — t) = M.

=
We can rewrite Equations (2.12), (2.13) as
(2.14) (2m)™ [ |l dGy = 1,
(2.15) (2r) ™ f Kyl dG = A1,
where

N

(2.16) Ky(w) = ,;1 e exp(iwty).

The c;’s depend on N, but for simplicity, this is not brought out by the notation.
Now, choosing A very large and positive we get

(2.17) (2m)~" |Ky|* dGy + (20)7 |Ky* dGy = 1,
lo|g4 lw|>A4

I
>
£
2

(2.18) (2r)~* |Ky|* dGo + (27)7 |Kn|* dGo
lwl<4 lw|>4
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Equation (2.18) can be written as

(2.19) (2m)7! |

wl=

|Ky|* dGo + 6(2r)7" |Ky|* dGy = Aa1.
<4 lw|>4
Thus, if Ay — 0, we must have ’

(2.20) f| _ |Ex dGo 0,

(2.21) (2r) " fl Vsl a6 1.

As a consequence of (2.20) and (2.14) there must be a subsequence Ky; , uni-
formly bounded and equicontinuous on every compact set, Hérmander (1963),
p. 38, converging to zero on a set of positive measure. However, Ky, must con-
verge to an analytic function, Hérmander (1963), p. 37, so that Ky; converges
to zero everywhere, |w| < A. In addition, we can bound this sequence by a func-
tion integrable with respect to G1, |w| = A4, so that by Lebesgue’s theorem on
dominated convergence [ 1. < 4 |K ;> dGx — 0, which is a contradiction of
(2.21). Therefore limity,. Axy1 > O.

It should be noted that the results concerning the convergence of Ky, to an
analytic function could also be obtained from a proposition of Feldman (1960).

3. Reproducing kernel Hilbert spaces. We now introduce the concept of a
RKHS which will be used extensively in the ensuing discussions. A more complete
treatment of the definitions and concepts involved has been given by Parzen
(1961). In our discussions we will speak only of separable Hilbert spaces which
are complete with respect to a suitably defined norm.

DeriniTiON. A Hilbert space H is said to be a RKHS with reproducing kernel
(RK) R, if the members of H are functions on some set 7', and if there is a
kernel R on T' @ T having the following two properties; for every t e T R(-, t)
¢ H, where R(-, t) is the function defined on T, with value at s ¢ T equal to
R(s, t), and, in addition, there is a reproducing kernel inner product (RKIP)
defined as (g, R (-, t))r = ¢(%), for every g in H.

It is known that the covariance kernel R of a stochastic process generates a
unique Hilbert space, H(R), of which R is the RK.

Following Aronszajn (1950), pp. 357-362, we introduce the notion of a direct
product space. Consider two identical RKHS H(R), H(R), and the norm
|| |l= corresponding to the RK R, and form the direct product H'(R) of H(R)
with H(R), H' (R) = H(R) ® H(R). This direct product is constructed in the
following manner: We form the product set 7" = T ® T of all couples of points
{s, &}, s, te T. We will only consider the case of infinite dimensional Hilbert
space, the finite-dimensional case being similar and somewhat simpler.

In the set T” consider the class of all functions g’ (s, ¢) representable in the form

7o) = 3 3 an ge)aslt),
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where {g.} is a complete orthonormal sequence in the space H(R), and also define

00 0

lg'llzer = Z ; Z:I Z=:1 agair (gi, §ir)e(gr , gr')r = i?;:‘l ah < .
It is shown by Aronszajn that the class of all functions ¢’ (s, t) with norm given
above forms the direct product RKHS H'(R) and R'(s1, 82, t1, t2) = R(s1, 1) -
R(s:, 1) is the RK of H'(R).

ExampLE. Let

m

Z ak(iw)m—k

(31)  R(s—1) = (2m)~" f exp (iw(s — 1)) do,

where the polynomial Y i axz™* has no zeros in the right half of the complex
z-plane. It has been shown by Parzen (1961), p. 970, that the RKHS H(R) con-
tains all functions ¢g(¢t) on @ < t < b which are continuously differentiable of

order m. The RKIP is given by

m—1

(3.2) (h, )z = f (Leh)(Lug) dt + 32 dih® (a)g™ (a),
where
(3.3) Lh = 7;: ah ™ (1),

ES
I

0

and dj; are the elements of the matrix which is the inverse of the matrix whose
elements are

(34) (0" /ot'0u")R(t — ©) limuma, J, k=0, ,m — 1.

The RKHS H'(R) consists of all functions g(s, t) on @ < s, t, < b which are
continuously differentiable of order m in s and in ¢. The norm in the direct product

space is given by

b pb
lolber = [ [ 1L Lugls, 01 ds as

m—1

+ ;ﬁ d,k Ltg(s, t) Ltg(s t) dt
(3.5) ’m_l .
+ X d,kf @ Lol ) 2 LugCs, t)l
m—1 ai+]' ,
+ 7 J;—O d]k d” 1at7 g( latk g(s t) |s=t=a

In passing we note that an explicit expression can be found for d;; by noting
that the RKHS of the time series {X(a + b — t), @ =< ¢t = b}, is the same as
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that of {X (), a < ¢ < b}, so that
m—1

fb (Leh)(Leg) dt + 2 duh™ (a)g™® (a)
(36) "¢ Fk=0

m—1

b
= [ @t de+ 3 dah® 0)g™ (),
a 7 k=0
where L7 is the adjoint of the differential operator L, . Integrating by parts we get

b b
[ @) (Lug) e - [ @ xto) a

k—j—1

=23 > a3 (—DUAOI GO — B (a)g T (@)
]+j<‘;c i=
m—1 m—1 . .
= ;ﬂ > (B (0)g™ (b) — h¥(a)g™ (a))
j even
min (j,k) o
-2 Z (=1)"" i i1 -

t=max (0,j+k+1—m)

Therefore, using Equation (3.6) we obtain

min(j,k)

di = 2 > (—=1)"" @mei @myi—j—r—, J+ keven,
t=max (0,j+k+1—m)

(3.7)
= 0,7 + k odd.
It is noted that the existence of the d;;’s implies that the matrix {d;} is positive
definite, since it is the inverse of the covariance matrix of Xo, ---, X ™ s0

that the first two sums in Equation (3.5) are nonnegative. The fact that the
third sum is also nonnegative follows easily from the definition of the norm in
the product space.

The last result we need is a special form of a theorem on the limit of RK’s due
to Aronszajn (1950). Let {T»} be an increasing sequence of sets, T' their sum

T="+T+---,ThcT,C---

Let Fy, N = 1,2, ---, be a class of functions defined in T'». For a function
fw € Fy we denote by fxm, m = N, the restriction of fy to the set T'n C T'w,
fux = fv. We assume that the classes Fy form a decreasing sequence in the
sense that for every fy € Fx and every m = N, fwm € Frn . We further assume
that the norms || ||zy defined in Fy form an increasing sequence in the sense
that for every fv € Fy and every m = N, |fwmlz, = |lfvlzy . Finally, we assume
that every Fy possesses a RK Ry(s, t). Under these conditions we have the
following theorem due to Aronszajn (1950), p. 362.

TueorEM. The kernels Ry converge to a kernel R(s, t) defined for all s, t ¢n T.
R is the RK of the RKHS H(R) constisting of all functions f, defined in T such
that thesr restrictions fox in Tx belong to Fy , N = 1,2, -+ , and limitxe ||fov| 2y
< . The norm of fo € H(R) is given by ||follz = limity-c ||fon|zy -
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This theorem is extremely important and forms the basis for the utility of the
RK approach to the present problem.

4. Necessary and sufficient conditions for equivalence. It was shown previ-
ously that Py and P; are equivalent iff limity.e Axz > 0, and

N
(4.1) limity-se ‘_21, (Owvi — 1)*

is finite. It is desirable, therefore, to evaluate the limit given in (4.1).
We obtain from Equation (2.9) that

N
(4.2) Zl A = Tr {(Rl_alr (RON} = (RON ) RIN)Ruv@RlN’

where the last expression is an inner product in the RKHS corresponding to the
kernel Riy ® Rix, which is a function of four variables defined by

(4.3) Riv ® Rin(8i, 85, , ) = Ru(ss, &) Ri(sj, 1),
1=14,7,klsN.

Equation (4.2) is obtained as follows:

N
(Row , Rin)mworiy = O Ro(si, )R (s5, t:) R (81, i) Ra(sy , ¢5)

%k =1

<,

N
=LA Ro(ss, t)RT (85, 8:)8(t; , &)
2,7, k=
’ '
;_l Ro(s: , t) R (st , )

= Tr {Row®1n} = Tr {RizCon},

since for any two square matrices of same order Tr {@ ®} = Tr {® @}, and
where we have used the notation Ri* (s;, t;) for the elements of ®1y . Similarly,

]

N
(44) 21 (1) = N = (Bw, Riv)riyoriy
and
. ‘
(4.5) Zl Mi = Tr {®iv®on}” = (Row , Bov) riyeruy -

Using Equations (4.2), (4.4), (4.5), we have
N
(4.6) Zl (Owi — 1) = |Row — Runllzixery -

Now it is easily seen that the conditions of Aronszajn’s theorem for limits of
RK’s are satisfied and we have

N
(4.7) limity-e Z{ (i — 1)" = |Bo — Ril|7,@2, -

This leads us to the following theorem.
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TreorREM 4A. Py and P; are equivalent iff limity. Ay1 > 0, and (Ro — Ry) ¢
H(R,) ®H(R,), in which case the RND is given by dPi/dP, = limity.. exp:
((XnX%, Riv — Row)royeriy + Doi1 In Aws), where XuX 3 is the restriction of
X(8)X() to Ty . If limityaw TI-: Ak = ¢ eists, then the RND can be written
in the more convenient form dP1/dPy = ¢ exp 3(XX*, Ry — Ro)r,er, -

Proor. Follows immediately from (4.7) and Héjek’s results stated previously.

A more convenient form of Theorem 4A is the following.

THEOREM 4B (Feldman (1960)). Let dGy = dw/(1 + «)*, where u is an integer
greater than or equal to unity, and let Gy be some other finite nonnegative measure on
the real line which has a component that is absolutely continuous. Then, Py is equiva-
lent to P 1 iff

b pb
(48) [ 1] @+ " exp Gots — 1)) ae
where @ = Gy — Gy, and the Fourier transform of (1 + w*)* d@’ in (4.8) is inter-
preted in the sense of Schwartz (1951) distributions.

Proor. Using (3.5) and interpreting Fourier transforms in the sense of
Schwartz (1951) distributions, we obtain

1B = Billsom = [ [ |[ (14 &) exp Gints — 1))

+ 22}@,, fab <f (f0)’(1 — iw)™ exp (tw(a — ¢t)) ‘?2%

2
ds dt < oo,

2

ilcs

5; ds dt

4.9 ,
' ([ (10)*(1 = i) exp (iw(a — 1)) ’ﬁ) dt
2
u—1 ’ ,
itk g 4. . Nir+i G . i+ dG
+ ("D e [ Gy GE [ () 5L

Now it is easy to see that ||Ry — Ril|z, o=, is finite iff (4.8) is true. In addition
(4.8) implies go/g1 — 1, @ — o« so that limit y.. Ayx > 0. This completes the
proof.

The following theorem follows directly from Theorem 4B, by noting that if
PoN PlN Pz, then PoN Pz and lfPoN Pl, P1 iR Pz, then Po_L Pz, cf.
Halmos (1950), p. 133.

TrEOREM 4C. If the spectral densities gi , k = 0, 1, are of the following form

lequk(w) =cxr + 0(""’—2)) 9o > 17 = 27 47 cee, CoCL F 0’

then Py and Py are equivalent iff go/gn — 1, w — o, or what is the same thing,
iff (o, q0) = (c1, q1)-

It would be desirable to have a theorem, similar to Theorem 4C, in which g;
would have arbitrary high frequency behaviour, i.e., ¢: need not be restricted
to even integral values but can be any number greater than 1. The main difficulty
in proving such a theorem with the present method is that of writing the RKIP
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for such kernels. Recently, Gladyshev (1961), using methods similar to those of
Baxter (1956), has proved a theorem which shows the necessity of the condition
go/g1 — 1, @ — oo, for equivalence of Py and P; in the case when g, and g, have
arbitrary high frequency behaviour. The sufficiency of this condition for equiva-
lence of Py and P, still remains to be proved. It is worthwhile to point out that
Theorem 4B has been stated in a different form, in terms of the covariance func-
tions, by Yaglom (1963).

The following theorem, which has also been derived recently by Parzen (1963),
is of some interest and follows from Equation (2.10) and computations similar
to those given in Equations (4.2)-(4.6).

TurorEM 4D. P, s equivalent to Py iff (Ro — Ry) ¢ H(Ry) ® H(R,).

This form of the theorem is inconvenient for the general treatment of station-
ary Gaussian processes since it is no longer possible to write the RKIP by intro-
ducing a single reference covariance function. This form can be used, however,
to rederive a theorem of Varberg (1961), since there the RKIP in H(R,) ® H(R,)
can be written directly.

6. Computation of Radon-Nikodym derivatives. We will now compute the
RND for pairs of equivalent autoregressive Gaussian schemes. These processes
are of importance in many practical applications. In this case we have

g; (i)™ exp (iuls — ©)) do

(51)  Ro(s — &) = (2m)" ]

B exp (tw(s — t)) dw

mi
(5.2) Ri(s —t) = (2«)"[ Ik;) by (o) ™"

where the polynomials > 2 azz™ ™", > mi, biz™* have no zeros in the right
half of the complex z-plane. We also define

mo
(5.3) Lh = ,§ axh™ P (1),
(5.4) Mh = g beh ™7 (2),

and assume that ¢ = 0, b = T. It follows from Theorem 4C that two such

processes are equivalent iff my = m; = m, ao = by .
We obtain from (3.2) that

m T . _
(XX*, B = Ro)meany = 2 (@ + b;)(as — by) [o X)X (1) dt
pe

(55) + 2a01§ (a,, _ bk) ‘{)‘T X(m_k)(t) dX(m—l)(t)

m—1

+ 2 (i — di) XV (0)X*(0),
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where
0 min (7,k) .
56) A =2 (;Hw )(—1)’—‘a,,._,-am+,._,-_k_l, j + k even
5'6 1=max (0, —m
=0, 7+ k odd,
min(j,k) .
5.7) d§k =2 (o%k-u , (= 1) bmibmtizimi—1 » Jj + k even
5.7 t=max (0, —m
=0, 7 + k odd.

We will now evaluate
N
(5.8) linity-eo Hl Mri = limitaae [Rox|!/|®uxlt.
A similar computation for the limits of these determinants has been given re-
cently by Héjek (1962). The limit in (5.8) will be evaluated by noting
(59) ICRONl = IEO(XJXk l Xo ) X‘()m_l))l/ldgk[’
(5.10) |®an| = |Bu(X Xk | Xoy -+, Xém—n)l/ld}kh-

where |a;| denotes the determinant of the matrix whose elements are a;; ,j, k =
1, ---, N. It is, however, more convenient to work with the conditional expec-
tations of X{™ "X {™ P, which is possible since

limity.n [Bo(X e | Xo, -+, XN /IBU(X X | Koy -, XE™70)
(5.11) = limityse [BEo(X{™ X" | Xo, -, X§™0)|/
IBy(X™ VXm0 | X, e, X)),
if either limit exists. By putting the determinants in diagonal form, we can write

|Bo(X X | X, -+, XE0)| 1y Bo(X0 — XG0)”
(XXM X, -, XEV)| S B(XTY — XY)?

(5.12)

where X{% ", k = 0, 1, is the projection of X;™ ™ on the subspace spanned by
Xo, -, Xm0, Xm0, ... X under Py, ie., the random variable in the
subspace which is closest to X{™ ™ in the mean square sense, c¢f. Doob (1953),

p. 155.
It is simpler to find first the projection, under Py, of X§™ ™, say Z,o, on the

subspace spanned by {X(£),0 < ¢t < (j — 1)T/N}. We obtain from (3.6) that

T m—1
(h, 9)r, = ‘,; (L:h)(Leg) dt +,~§,:od?"h(j)(0)g(k)(0)

(5.13) T m—1
- f (L¥n) (L¥g) dt + godgkh("’(T)g("’(T).
0 I
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Using (5.13) we may evaluate Zy by writing
G-1TIN
Za= [ (LIX (1) (LB XX (1)) dt
(5~14) 0 m—1 . 6k
+ > dR X = Eo(X{ VX (8) limvrin
ole=0 ot
However, L¥Eo(X{™ "X (t)) = L¥R{™ ™ (T/N — t), and LiRo(s — t) = 0,
s > i, therefore

L¥R™V(GT/N —t) =0, 0=t= (i— 1)T/N,
so that (5.14) can be written as

m—1
Zyp = 2 d?;cXﬁi)l(a"/at")(am_l/asm_l)Ro(s — 8)|smim/ ¥ ==y TIN
i
m—1
(5.15) -2 dAXE(—1) RO (T/N)
m—1 m—1

= ; X'(i)lkg; 4% (—1)*(RE™2(0)

Now, we have

m—1

(5.16) > (1) RE™T(0) d = 1, ifj=m—1
k=0

=0, ifj#m-—1,

since (—1)*R§™™ (0) represent the elements of the covariance matrix of Xo, « -+ »

X§™ P of. (3.4), and dSy is its inverse. Moreover, in view of LiRP (s — t) = 0,
t<sk=0,1,2,---, we have

m—1
R((,'"'H‘)(O-l—) _ _ao—l hz:am—hR(()h-l-k)(O—l_)’ k=0, 1,2,---,
=0

so that
m—1

(5.17) kZ (=1)*R§™P(0+) d = —am-i/as, 0=j=m—1
=0

If we use (5.16) and (5.17) in (5.15) we get

m—1

(5.18) Zo = X" — (T/N) 2_;0 (@m-i/a0) X + O(NTD).

Now X, can be written as
. G-DTIN
X9 = f X9 (¢) dt
(5.19) B
=X+ 2 XVPT/N 6 j=0,-00,m—1,
h=1
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where Eo(¢*) = O(N™"). Thus, using (5.19) in (5.18) we may evaluate X{¢ " as
m—1
(520) X% = XY — (T/N) 2 (an_3/a0) X2 + O(N7").
=

Hence
Ey(X{™P — X&) = 2(1 — (—1)"R$™2(T/N))

m—1

+ (2T/N) ;0 (@m—i/a0) (—1)’(RS" 7 (T/N) — R{™(0))

m—1

+ (T/N)? MZ=0 (@m—sami/az) (—1)R§(0+) + O(N™?)

2(=1)™(T/N)RF™(0) + (—1)™(T/N)’R§™ (0+)

+ 2(T/N)? ],Z,o (@m—3/a0) (—1)’R§™P(0+)

m—1

(5.21) + (T/N)? j;o (@m—s@m-t/a3) (—1)'RF™ (0+) + O(N )

2(=1)"(T/N)R¢" > (04)

+ (T/N)’ >; (@m-i/a0) (—1)R§™(0+) + O(N™®)

2(—1)"(T/N)R&™(0+)
— 2(=1)™(T/N)*(a1/a0) RE™(0+) + O(N®)
= (T/N)as’(1 — (T/N)(ai/a)) + O(N?),

Il

where use has been made of the well known relations
RV (0£) = 0, j<m-—1
R§(04+) = R$?(0—) = R§(0), 0<j<m-—1

RI™P(04) = —RP(0—) = (—=1)"ai,

m—1

(=D)"R™™P(0—) = — 2, (1) (@ns/a) RS (0-).

Thus, we have

|Rovl* _ |/’

— = limity.,
|R1w|? |d?k|§ N

1=1

il 1 (b1 a1>
= S (2 —9%).
%P2\ T e

T [ (T/N)ai®(1 — (T/N)(ar/ao)) + O(N )T
(522) I [ T/ = (T/N)(5u/50)) + ON) ]
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The RND associated with pairs of equivalent Gaussian autoregressive schemes
is obtained from (5.5) and (5.22) as

Py _ |duf' 1 <b1 _ a1>
ar, ~ e\ e T g

m T
+ 2 (@ + b (@ — b) [ XX

(5.23) n r
+ 2a0 Y (@ — b) f X9 (1) X" (1)
k=1 0

m—1
+ > (di — d}k)Xéj)Xék)> .
7.k=0
The expressions for dj , dj; are given in (5.6), (5.7), respectively.
ExampLE 1. m = 1. Let

Ro(s — &) = osexp —Bo|s — {, Ri(s —t) = otexp =i |s — ¢,

20380 = 20361 = K, 2>0,6:>0k =0, 1.

The RND is given by
¥ T
ZTIZZ = <Z_:> exp — 2_}—{<(ﬂl — B)(X: + X2 — KT) + (8 - ﬂﬁ)j; X%(t) dt).

This result agrees with that given by Streibel (1959).
ExAMPLE 2. m = 2. Let

go(w) = |—o" + 200 + vi[
gi(w) = |—o® + 20008 + i[5, @ > 0,7 >0,k =0,L
The RND is given by
2B 8 oy — (o — ) (X + (X = 1)
dP, a0 Yo ’

+ (a7} — @) (X5 + X2) + (41 — %) (X2 X7 — XoX(")
T T
+ ol =2 =t 4D [ OOV @+ 6t [ X0 @),
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