LIMIT THEOREMS FOR THE MAXIMUM TERM IN
STATIONARY SEQUENCES!

By SiMeoN M. BERMAN

Columbia University

1. Introduction and summary. Let {X,, n = 0, =1, ---} be a real valued
discrete parameter stationary stochastic process on a probability space (2, &, P);
foreachn = 1,2, --- ,let Z, = max (X;, ---, X,). We shall find general con-
ditions under which the random variable Z, has a limiting distribution func-
tion (d.f.) as n — o ; that is, there exist sequences {a,} and {b,}, a, > 0, and a
proper nondegenerate d.f. ®(x) such that

(L.1) limp.e P{Z, < @z + ba} = ®(2)

for each z in the continuity set of ®(z).

The simplest type of stationary sequence {X,} is one in which the random
variables are mutually independent with some common d.f. F(z). In this case,
Z, has the d.f. F"(z) and (1.1) becomes

(1.2) limpaew F*(anz + b,) = &(x).

It is well known that in (1.2) ®(z) is of one of exactly three types; necessary
and sufficient conditions on F for the validity of (1.2) are also known [9]. The
three types are usually called extreme value d.f.’s [10].

Theorem 2.1 gives the limiting d.f. of Z, in a stationary sequence satisfying a
certain condition on the upper tail of the conditional d.f. of X, , given the “past”
of sequence: the limiting d.f. is a simple mixture of extreme value d.f.’s of a
single type. These are the same kind of d.f.’s found by us [3] to be the limiting
d.f.’s of maxima in sequences of exchangeable random variables. The conditions
of Theorem 2.1 are specialized to exchangeable and Markov sequences, and
Theorem 2.2 extends the methods of Theorem 2.1 to general (not necessarily
stationary) Markov sequences. It is shown that stationary Gaussian sequences,
except for the trivial case of independent, identically distributed Gaussian ran-
dom variables, do not obey the requirements of the hypothesis of Theorem 2.1:
hence, Sections 3, 4, and 5 are devoted to a detailed study of the maximum in a
stationary Gaussian sequence.

Theorem 3.1 provides conditions on the rate of convergence of the covariance
sequence to 0 which are sufficient for Z, to have the same extreme value limiting
d.f. as in the case of independence, namely, exp (—e "). The relation of these
conditions to the spectral d.f. of the process is also discussed. A weaker condi-
tion on the covariance sequence ensures the “relative stability in probability”

Received 8 August 1963; revised 10 November 1963.
1 Research supported by National Science Foundation Grant NSF-GP-316 at Columbia

University.
502

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%ﬁ
The Annals of Mathematical Statistics. IIEGIE ®

WWwWw.jstor.org



MAXIMUM TERM IN STATIONARY SEQUENCES 503

of Z, (Theorem 4.1). Theorem 5.1 describes the behavior of Z, when the spec-
trum has a discrete component with “not too many large jumps” and a ‘““smooth”
continuous component: when properly normalized, Z, converges in probability
to a random variable representing the maximum of the process corresponding to
the discrete spectral component. A special case was given by us in [2].

We now summarize some known results used in the sequel. The extreme value
d.f.’s are continuous, so that (1.2) holds for all £; furthermore, this holds if and
only if it holds for all z satisfying 0 < ®(x) < 1. (1.2) implies that for all such z

0 < F*(a.x + b.) <1, for all large =,
and
(1.3) limg.e Fa.x + b,) = 1.

Let 2, be the supremum of all real numbers z’ for which F(z') < 1; then, for
all z satisfying 0 < ®(z) < 1, we have

(1.4) limyse G + by = Xy -

From (1.3), and the asymptotic relation —log F ~ (1 — F), F — 1, we see that
(1.2) holds if and only if

(1.5) lim,,, n[l — F(a,x + b,)] = —log®(x).

2. Limiting d.f. for the non-Gaussian case. Let {X,,n = 0, &1, ---} be a
stationary sequence on (Q, &, P). Let §; be the sub-o-field of § generated by the
family of random variables

{X,, —o <n=<k, £k=0,=x1 - ---; put F_, = NF, and
k

Fk(xfffk_l) = P{Xk = xlgk—l}, k= 0, :El, cer .

The following theorem was suggested by the “comparison’ technique, first used
by Lévy [11] and extended by Loéve [12], for the calculation of the limiting d.f.
of partial sums of dependent random variables.

TueEOREM 2.1. Let {X, ,n = 0, =1, - - -} be a stationary sequence on (2, F, P)
and F(z) a d.f. for which (1.2) holds for properly selected sequences {a,} and {b,}.
If there exists a nonnegative random variable Y on Q such that

(1) Y is an invariant random variable (for the definition, see [7], p. 457);

(ii) Y has a finite expectation, i.e., EY < oo;

(iii)

(2.1) limss, £ |[1 — Fi(z | $0)]/[1 — F(z)] — Y| =0,
where ., is defined in terms of F'; then,
(2.2) limyw P{Zn £ ant + b} = E[@(2)]",

at all continuity points of the latter. The conditions under which the right hand side
is a proper, non-degenerate d.f. are given in [3].
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Proor. We shall first prove the following inequality.
(23) |P{(Zn = 2} — EF""(2)| S nE |Fi(z|%0) — F¥(z)],

for —o <z < w,n = 1,2, -+, and every nonnegative, invariant random
variable Y, satisfying (i), (ii), and (iii). Let Uy, U;, --- be a sequence of ran-
dom variables on (©, §, P) which are conditionally, glven the sequence {X,},
mutually independent with the common conditional d.f. F¥(z), that is, for every
finite set of z’s, %1, *+* , T,

(24) PV S 25,5 = 1, o, m ] (X)) = [T P (a).

This definition of the conditional d.f. is justified because an invariant random
variable is F_,-measurable ([7], p. 459); furthermore, by this very fact, we have

(25) P{U x:;J—l '7ml{Xn}}=P{Ui§xi7j=1’,"'7mlg—°°}-
Fix n and z, and define the events 4;, B;,5 =1, --- ,nas 4A; = {X; < z}
and B; = {U; < z}; then,
{Z, <z} = N A4;, {max (Ui, --+, Us) = 2} = N B;;
j=1

hence, the left hand side of (2.3) is [P(NA;) — P(NBj)|. The difference
P(NA;) — P(NB;) may be expressed as the sum of n differences of probabili-

ties as
[r(8.4) - (2402
n :p(:f]:A,-an> —P(E 4N 9_ B>]+
(26) . Fp(ﬁlA, 1 h B,) <n 4;0 n B>]+
B =kl

+ FP (Al nn B,-) —P<ﬂ B,-)].
B j=2 =1
We seek a common bound on the terms in this sum. N2 4 718 in Fr—y ; hence,

j=1 F=k+1 j=1 =k

— f [P (Ak n ﬁ Bj]ﬁk_1> - P <ﬁ leffk_1>:| dP.
1—141 j=k+1 =k

By the rule of composition of conditional expectations [7] p. 37, and by (2.4)

2.7)
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and (2.5), there follows

P (6 Bil5s) = B[P (8 B11x)) 15 ]

=E [P <ﬁ B,-lsf_w>|sk_1:| = [F(2)]" "7,

=k

(2.8)

Let 14, be the indicator function of A; ; then, since Aze Ft,

P(Ak n n leffk_1> = E[P (Ak n ﬁ leka>|ka_1:|

j=k+1 j=k+1

= E[IAkP< n leifk>|5k_1];
J=k+1

the latter, by (2.8), is equal to P(4 | F1ry) [F(x)]"™*. From this expression
and from (2.8) one deduces that the right hand side of (2.7) is bounded
in absolute value by E|P(4:|%—) — F'(z)|. The stationarity of {z.}
and the invariance of Y imply that the sequence of random variables
{ | P(Ax | Fa—1) — F'(2) |, k=0, &= 1, ---} is stationary; hence,

B|P(4i |F1a) — F¥(2)| = BIP(4:|%0) — F* ()], k=1,--,n

Each term in (2.6) is bounded by this quantity, and so (2.3) is confirmed.

Let z satisfy 0 < ®(z) < 1 and let a,x + b, take the, place of the variable 2
in (2.3). We shall show that the right hand side tends to 0 for n — oo ; this will
complete the proof. The right hand side is written as the product of two factors

 E|Fi(anz + ba|F0) — F¥(anz + ba)|
1 — Fla,z + b,) )

n[l — F(a,z + by)]
By (1.5), the first factor converges to a positive finite limit. The second factor
may be written as

g L= Fiane +bu]%0) 1 — F(anz + bu)|
| T—Flaae+b)  1—Flaas+b)l

and, by the triangle inequality, is dominated by

l]-‘—'Fl(anx"i'bnlgO)__Y lgFY(anx"'bn)__
| 1— F(anz + b,) 1 — F(a,xz + by)

By (1.4) and (2.1), the first term above tends to 0. To prove that the second
term also does, it suffices for us, by (1.3), to show that

limy n E|[(1 - 'UIY)/<1 —u)] =Y =0

E Y.

+2|

for every nonnegative random variable Y with & finite expectation. By the law
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of the mean, there exists a (random) value @, v < @ < 1, such that 1 — u* =
Y4a" (1 — u); hence,

(1 —u")/1 —w)] =Y =Ya"" -1 < Y/u.

The assertion follows by taking expectations, letting » — 1, and applying the
dominated convergence theorem.

We shall now discuss the validity and implications of (2.1) in special kinds of
stationary sequences.

Ezxchangeable sequences. It was noted in Section 1 that the class of limiting
d.f’s in (2.2) coincides with a subclass of the class of limiting d.f.’s for the maxi-
mum of exchangeable random variables [3]. There is a connection between (2.1)
and the necessary and sufficient condition for convergence in the exchangeable
case. The latter condition can be shown to be equivalent to the convergence in
distribution of [I — Fi(z|F_»)]/[1 — F(z)] as £ — z. ; hence, for the special
case of an exchangeable sequence, Theorem 2.1 implies the previously given
necessary and sufficient condition.

Stationary Gaussian sequences. (2.1) does not hold in this case unless ¥ = 0
or the covariance sequence is identically 0. Let {X,} be stationary and Gaussian
with

EX,=0, EX,=1, EXi|%) — EXi|%) =,

where ¢ is the conditional variance given the “past”, and 0 < ¢ < 1. Let ¢/(z)
be the standard Gaussian d.f. It is well known that

Fi(z | o) = ¢¥([xr.— E(X1|F0)]/0).
From the asymptotic formula for 1 — ¢(z), x — « ([8] p. 166), one obtains
1 — Fi(z | Fo) ~ (1 —¥(x/0))-exp [— (1/26") B (X1 | Fo) + (2/0)E(X1|Fo)].

When divided by any decreasing function of z, this expression does not have a
limiting d.f. which is neither improper nor degenerate at 0 unless E(X; | F,) =
0 with probability 1; a fortiors, this expression cannot converge in the mean to a
finite random variable which is not degenerate at 0, unless E(X; | §,) = 0; hence,
there exists no d.f. F(z) and appropriate random variable Y (not identically 0)
for which (2.1) holds, unless E(X; | %) = 0. In the latter case, the covariance
sequence is identically 0.

Markov sequences. Let { X} be a stationary Markov sequence: the finite dimen-
sional d.f.’s of the sequence are determined by the (stationary) absolute d.f. and
the transition probability function F(z | Xi) = P {Xyu =< x| Xi}. By the
Markov property, the expression Fi(z | %) in (2.1) is equal to F(z | X,), and
(2.1) becomes

(2.9) limzos, B | [(1 — F(z | X0))/(1 — F(z))] = Y| = 0.

If{X,,n=0,1,---}is a Markov sequence and if the d.f. of X, is not a sta-
tionary d.f., then {X,,n = 0, 1, - - - } is not a stationary sequence; nevertheless,
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a suitable version of (2.9) is still sufficient for the conclusion of Theorem 2.1 if
the transition function is subject to certain conditions which guarantee the
existence of a stationary initial d.f. We shall prove a simple form of such a limit
theorem; more general forms can be established with the same techniques.

THEOREM 2.2. Let {X, ,n = 0,1, - -+ } be a Markov sequence with the stationary
transition function F(x | X). We assume that there exist positive numbers v and
p, p < 1, such that for any initial d.f. and for any bounded random variable f,
Ifl M < o, which is measurable with respect to the o-field generated by
{X., n = k}, we have

(2.10) |E'f — Ef| < 2yM",

where E' and E are the expectation operators with respect to the measures induced
by the initial d.f. and the stationary d.f. (which is assumed to exist), respectively.
If there exists F satisfying (1.1) such that for every u

(2.11) limg,., F(z|u) =1,

and if (2.9) holds with Y = 1, then the conclusion (2.2) follows with ¥ = 1.
Proor. We remark that (2.10) and the existence of a stationary d.f. are im-

plied by condition (Dy), used to prove the central limit theorem in [7] p. 221.
The inequality

212)  PiZused —F@| S Y E e X0 ~F@)

for any initial d.f. is constructed by using the method of proof of Theorem 2.1
with Y = 1 and Fi(z | Fr1) = F(x | Xi—y1). If the initial d.f. of X, coincides
with the stationary d.f., the assertion of the theorem follows from (2.9). Even if
the initial d.f. is not the stationary d.f., then, as we shall show, the sum on the
right hand side of (2.12) is asymptotically (n — «, z — z,,) independent of
the initial d.f., so that the behavior of (2.12) is the same as in the case of a
stationary initial d.f.
Let us estimate the sum of differences

n

(2.13) J; {E'|F(z|X;2) —F(z) | —B | F(z | X;) —F()|}.
Let m be an arbitrary fixed position integer: consider the part of the sum (2.13)
over indices from m + 1ton > m. Putf = |F(z | -) —F(z)| and apply (2.10)
with M = 1: the part of the indicated sum is bounded above by

2y > o ~2y 0" (1 = p)7 n— o,
k=m+1
This can be made small by choosing m to be large. Now insert a,z + b, in the
place of z in the partial sum from 1 to 7 in (2.13): each term of the finite partial
sum tends to 0 by (1.4) and (2.11).
A more general formulation of this theorem would let ¥ be a random variable
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which is measurable with respect to the o-field generated by the ‘“‘ergodic decom-
position” of the state space [7, p. 232].

3. Limiting extreme value d.f. for the maximum in a Gaussian sequence. Let
{X.,n =0, +1,---} be a stationary Gaussian sequence (henceforth abbre-
viated as “S.G. sequence’”) with

(3.1) EX, =0, EX,=1, n=0,=%l,---
and with covariance sequence {r, ,» = 1,2, - -+ }:
(3.2) rn = EXoX,, n=12 ...
Let sequences {a,} and {b,} be defined as

= (2logn)?
(3.3)

b, = (2log n)} — 3(2log n) *(log log n + log 4r).
It is known that when r, = 0 (the X’s are mutually independent)
(3.4) liMpsow P {Zy € @y x + by} = exp(—e )

for all z, [5] p. 375. This result was generalized to the case r, = 0 for all but
finitely many n (case of m-dependence) by Watson [14]. In what follows we shall
replace these conditions by asymptotic conditions on 7, for n — .

It is necessary to collect some results on probabilities associated with k-dimen-
sional Gaussian d.f.’s. Let (7;;) be a k X k symmetric positive definite matrix
with 1’s along the diagonal, and let ¢y (%1, - -+, @k ; 755, 1 < 7 < 7 < k) be the
k-dimensional Gaussian density function with mean vector 0 and covariance
matrix (7:;); ¢ is a function of the «’s and the k(k — 1)/2 parameters r;; .
Define:

(3.5) Qi(c; {rii}) f / o1, <o, ms {ri}) ]I=Il dz;

The partial derivative with respect to 7 is obtalned by a direct adaptation of a
method of Slepian ([13] Section 2.1):

Q.

ar;
36) "

=f f (@1, v Thot, G Tagr, * 0, B, 6 Biga, c o, Tk s {Ti))
—00 /— 0

Jh g7l

This expression is positive; thus @y is an increa,sing function of the arguments
{r:;} ; therefore, for 6,0 < 6 < 1, such that r;; £ 6,1 <7 <j £ k, we have

(3.7) Qi(e; {ri}) = Qu(e; {6}).
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If the upper limit of integration (c, - -, ¢) in the (k — 2)-fold integral in
(3.6) is replaced by (e, ---, «), then the value of the integral is increased.
Its augmented value is obtained by integration over the (k — 2) variables, and
is equal to

(3.8) e, ¢; ) = (2m) (1 — 1) ™ expl—c’/ (1 + )];
hence,
(3.9) (3/9rn) Qu(c; {rii}) = ealc, €5 h)-

Suppose that the covariance r;; is a function of the difference j — 7, ¢ < j; we
write r;_s = r; . The function P} is defined as

(3.10) Pi(e;ra, o, o) = Qu(c; {rii});

the partial derivatives are given by the chain rule as

(3.11) OPy/or; = th, 9Qw/ 311 .
—h=)

In the following lemma, we compare the d.f. of the maximum in a S.G. sequence
with a general covariance sequence to the maximum in the particular S.G.
sequence with r, = 0. :

LemMa 3.1. Let {X,} and { Y.} be S.G. sequences satisfying

EX,=EY,=0, EX,=EY,=1n=0%1,--
EX\X, = r., EY Y, = 0, n=12---.
For every real number ¢, and every positive infeger n,
IP {ma,x (X17"" )Xn) = C} —P {max (Yl’ ) Yn) = C}l
(3.12) n=1 .
= ,}:: [ri| (n — 7) exle, ¢; [ri]).
Proor. From the definition of P (3.10), there follows
P{max (Xl, e ,Xn) é 0} = Pn (C;rl, et 7rn—1)
P{max (Yl, ey, Yn) = C} = Pn (0;0, o 70)'

By the law of the mean, there exist numbers ri between O and r;, 7 = 1, -+,
n — 1, such that

Pn(C; Ty, * ,rn-—l) —_ Pn(C;O, . e ’0)
(3.13) et
= J; r;(dP,/0r;) (c; r; o Tln—l).

(If r; = 0 for some <, put ri = 0.) The sum in (3.11) has k — j terms, and, by
(3.9), each term is bounded by ¢x(c, ¢; 7a1) ; hence, (3.12) follows from the mono-
tonicity of ¢. as a function of 7.
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Lemma 3.2. Let {X,} be a S.G. sequence satisfying (3.1) and (3.2). If
n—1
(3.14) limom 2 | (n = ) (1 — )7 " *110 (log m) 1O = 0,
j=1

then (3.4) holds for Z, .
Proor. In view of the result (3.4) for the special case 7, = 0, we apply Lemma
3.1, put ¢ = a,x + ba, and let n — . From (3.3) we obtain

(anx + b,)* = 2logn — log log n + O(1).

If this is substituted for ¢ in the right hand side of (3.12), the latter is dominated
by a constant multiple of the left hand side of (3.14).
Sufficient conditions on {r,} for the validity of (3.14) are now given.
TaeoreEM 3.1. (3.14) holds if either

(3.15) lim,,e, 7: log n = 0,

or

(3.16) D < .
n=1

Proor. (3.15) or (3.16) imply 7, — 0; therefore, the stationarity of {X,} ex-
cludes the possibility that either |r,] = 1 for any n or that lim sup,.. || = 1;
hence there is a positive number § such that

(3.17) sup, |ra| = 6 < 1.
Define: 8(n) = supxzn |r%|; then (3.15) implies
(3.18) lim,.e 6(n) logn = 0.

By (3.17), (1 — )7} is bounded above by (1 — ")} so that (3.14) is im-
plied by

n—1
(319) (log ) 3 1] (n = 5 0,
i=1

Let « be a real number satisfying 0 < o < (1 — 8)/(1 + 8); let [u] be the
integral part of the real number u. Let n be large: split the sum in (3.19) into
a first sum over indices up to [2°] and a second sum over indices from [2°] + 1
ton — 1. The first sum is dominated by on'"**“*?  which when multiplied by
(log n), tends to 0 because of the choice of a. The second sum, multiplied by
(log n), may be written as

n—1

n”*(log ) j=[;‘,]+l Iril (n — j)expl(2 log n) [ril/(1 + [ril )],

and is dominated by (log n) 8(n®) exp [26(n®) log n], which, by (3.18), tends
to 0. The sufficiency of (3.15) is verified.
In order to demonstrate the sufficiency of (3.16), we have only to show that
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the second sum in (3.19), multiplied by (log n), tends to 0, as the proof for the
first sum is the same as before. By the Cauchy-Schwarz inequality, the square
of the second sum, multiplied by (log n)? is dominated by
n—1 n—1
(togm)- > vt 35 (n— ) ot
j=[nal+1 J=[ne]+1
the latter is dominated by
(log n)2'n3—4/(1+6(n°‘)) "il 7‘? ,
j=(m]+1

wlich, by (3.16), tends to O.

It is of interest to give conditions on the spectral d.f. of the process which are
sufficient for (3.15) and (3.16). A simple sufficient condition for (3.15) is that
the spectral d.f. be differentiable, and that its derivative (the spectral density
function) satisfy a Lipschitz condition of order «, for some a > 0. In fact, the
stated condition implies r, = O(n~*), which implies (3.15), [15] p. 46. A suffi-
cient condition for (3.16) is, by the Bessel inequality, the square integrability
of the spectral density function [15] p. 13.

We note that Theorem 3.1 contains, as a special case, our earlier result on the
“law of large numbers’ [1]. It would be interesting to make a corresponding
generalization of Cramér’s result [6] in the continuous parameter case.

It may be observed that the assumption of stationarity is not critical and that
Theorem 3.1 may be generalized to nonstationary Gaussian sequences. Finally,
there is no apparent overlap between our results and those of Chibisov [4], which
were announced without proof.

4. Relative stability of the maximum in the Gaussian case. The maximum
Z. is said to be relatively stable in probability if there is a sequence of constants A,
such that Z,/A, — 1 in probability [9]. In the S.G. sequence relative stability is
implied by (3.4), with 4, = (2 log n)!. One may ask if it is possible to extend
relative stability of Z, to sequences satisfying conditions weaker than either
(8.15) or (3.16). This is done in the following theorem.

TueoREM 4.1. Let {X,, n = 0, &1, ---} be a S.G. sequence satisfying (3.1)
and (3.2). If

(4.1) limy,e 7n = 0,
then
(4.2) Za/)(2 log n)* — 1 in probability.

Proor. (4.2) is equivalent to
P{Z,> 2logn)' (1 + ¢)} =0

(4.3) .
P{Z, > 2logn)t (1 — e} —1, e> 0.
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The first part of (4.3) has a direct proof:

P{Z,> (2logn)}(1+¢)} = P (lj {(Xp > (2logn)i(1 + e)})

< 32 P(Xe > (2logm)(1 + 0] = a1 — $((2log (1 + )] -0,

where the last assertion follows from the well known expansion for 1 — ¢ (z),
x — o ([8] p. 166).

The nontrivial part of the proof is the verification of the second part of (4.3).
Let p be a real number satisfying 0 < p < 1, and let {V,,n = 0, =1, --- } be
a S.G. sequence satisfying (3.1) and (3.2) withr, = p,n = 1,2, --- . ({V,} isa
family of equally correlated Gaussian random variables.) We have shown in a
previous note [2] that max (Vy, ---, V.) — (2(1 — p) log n)? converges in
probability, as n — o, to a random variable which has a Gaussian d.f. with
mean 0 and variance p; hence max(Vy, ---, V,)/((2(1 — p) log ) > 1in
probability, so that

(4.4) P{max (Vi, -+, V.) > (2(1 — p)log n)}(1 — &)} =1, > 0.

The main idea of the proof of the second part of (4.3) is showing that, for any
p > 0, Z, is “asymptotically stochastically larger’” than max (Vy, ---, V,), so
that (4.3) follows from (4.4).

By (4.1), there exists for every p, 0 < p < 1, an integer m such that

(45) lrnl = p, n = m.

The subsequence {X,.,n = 0, &1, -- - } is also a S.G. sequence, and its covari-
ance sequence {Tnm,n = 1,2, -+ } is, by (4.5), dominated by p; hence, by (3.7)
and (4.4),

P{maxi<j<n Xim > (2(1 — p) log n)}(1 — )}
> P{max (Vy, ---, V) > (2(1 — p) logn)}(1 — ¢)} — 1.
On the other hand, Z,, > maxi<j<n» Xjn, so that we also have
limnaew P{Znm > (2(1 — p) log n)}(1 — €)} = 1.

The convergence here is uniform in the factor 1 — ¢, since the function on the
left hand side is monotonic in 1 — ¢ and the limit on the right hand side is con-
tinuous (constant) in 1 — e. Using the uniform convergence, and the inequality
(x + )P — a2t =1z, 2> 0,y >0, (this is established by the law of the
mean), we have

lim infpsw P{Zam > (2(1 — p) log nm)}(1 — €)}
2 liMnow P{Zam > (2(1 — p) log n)}(1 — €) [1 + log m/2 log n]} =1.
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Forany n = m, m [n/m] = n = m ([n/m] 4+ 1); hence, Z, = Zmia/m), and so
lim infn.e P{Z, > (2(1 — p) log n)}(1 — &)}
= lim infraew P{Zmmm > (2(1 — p) log m ([n/m] + 1)) (1 — €)}.
The latter, by the previous argument, is equal to 1; hence,
limn.. P{Z, > (2logn)! (1 — &)(1 — p)¥} = 1.

Since € and p are arbitrary, the second assertion in (4.3) holds.
The absolute continuity of the spectral d.f. is sufficient for (4.1); this is an
immediate consequence of the Riemann-Lebesgue Theorem ([15] p. 45).

b. A convergence theorem for Z, in the presence of a discrete spectral com-
ponent. The conditions of Theorems 3.1 and 4.1 imply the continuity of
the spectral d.f.; in fact, they require 7, — 0, and, consequently,
n N (r} + -+ 4+ r%) — 0, which is necessary and sufficient for the continuity of
the spectrum ([7] p. 494). In this section, we study the asymptotic behavior of
Z, when the spectrum has discontinuities. First, we consider a process with a
purely discrete spectrum.

LemMma 5.1, Let {V,, n = 0, 1, --- } be a S.G. sequence whose spectral d.f.
is a step function on [—m, 7] with a countable number of jumps of heights ¢ , j = 1,

2, -+, at the respective points \; ,j = 1,2, --- . If
(5.1) ]Z_llca'l < o,
then

(5.2) 6 = Supnz1 Va

is nonnegative and finite with probability 1.
Proor. It is known that V, is representable with probability 1 in the form

(56.3) Va= Z:,l lej| (£j cos nA; + njsinn ;)
]= ’

where {£,} and {7,} areindependent sequences of mutually independent standard
Gaussian random variables ([7] p. 488); hence,

7 5 3 led (e + i), ne1,

where the series converges with probability 1.

Now we consider a process composed of a process of the type in Lemma 5.1
and one of the type in Theorem 3.1.

TuEOREM 5.1. Let {X,} be a S.G. sequence satisfying (3.1) with a spectral d.f.
G(x) satisfying the following conditions: G(x) = Gi(z) + Go(z), where Gi(z) s
a spectral d.f. of the type in Lemma 5.1, with ¢ = D g ¢i, 0 < & < 1; and
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Ga(z) which is a (continuous) spectral d.£. of variation 1 — ¢, has Fourier-Stieltjes
coefficients

T = 2[ cos n\ dG:(N\)
0

satisfying (3.15) or (3.16). Then, for n — o,
(5.4) Z, — (2(1 — ¢*) logn)t — 0

in probability, where 0 is defined by (5.2).

Proor. Let {U,} and {V,} be the (independent) S.G. sequences corresponding
to the spectra Gy and Gy, so that X, = U, + V,.,n =0, £1, --- . Let M be a
fixed, arbitrary positive integer, and let the sum representing V, in (5.3) be de-
composed into a first sum V'’ over indices up to and including M, and a second
sum V< over indices greater than M. As in the proof of Lemma 5.1, there exists
a nonnegative random variable 6, such that

0

(5.5) Eoy = 2(2/7)} ‘;ﬂ lei, VP |< 6k, n = 0 £1,-
i

hence, Z, satisfies the double inequality
(5. 6) maxi<j<n (U; + V('l)) — 0y £ Z, = MaX1<jzn (U;+Vv 1)) + Ou

Suppose first that the N’s are rational multiples of 2x; this assumption will be
dropped later. {V P} is a periodic sequence, so that it has a (random) period p
which depends on M. Since {U,} and {V’} are mutually independent, {U } is
independent of the random variable p; thus, the sequence { U, ,n = 0, +£1, }
is, conditionally given p, a S.G. sequence with EU,, = 0, EU:, =1 = ¢,
EUU,p = Tnp . (3.4) implies Z — (21log )} —0in probablllty, 1f the vanance
of the X’s is changed to 1 — ¢, we get instead Z, — (2(1 — ¢*) log n)} - 0in
probability. Now the covariance sequence {r,,} satisfies (3.15) or (3.16) if
{rn} does; hence, by our previous remark

max (U, , Usp, -, Unp) — (2(1 = ¢*) logn)* =0

in probability.
The same argument shows that
(5.7)  max (Us, Upss, -+, Unovpes) — (2(1 = &) log n)! =0,

in probability, j = 1,
We now hold the famlly {(V(l) VP),n=0,=£l, ---}fixed and consider the
corresponding conditional probabilities. max; <j<np (U + V") may be written

as
isnat (Ui + Vigha)
max <x <p MaAXo <j <n—1 ip+k iptk

(1)
= max;<i<p (MAXogj<n1 Ujpsr + Vi),
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since Vi” = Vi ; hence, by (5.7),

maxi <k <p (MNaXo <j<n-1 Ujptr + V) — (2(1 — &) log np)”" — max; <k <p Vi .

in probability.
The analysis used in the proof of Theorem 4.1 shows also that

max;<i<n (U; + Va('l)) - (2(1 — 02) log ’n)é — MaX <k <p VIE:I),
in probability; hence, by (5.6), the inequality
[maxs <k <p Vi — Zn + (2(1 — ¢°) log n)} < Ou

will hold with probability close to 1 if # is sufficiently large. (5.1) and (5.5) show
that 0 is arbitrarily small with high probability if M is sufficiently large;
furthermore, max; <x <» V& is arbitrarily close to § with high probability if M is
sufficiently large. We may conclude that (5.4) holds conditionally in probability;
hence, by bounded convergence, it also holds in probability.

The assumption that the A;/27 are rational can be dropped. For each sequence
(£} and {7} in (5.3), the corresponding sequence {V "} with arbitrary A;, - - -,
A is uniformly approximable by another such sequence having the same £’s and
7’s but rational \;/2x. It now follows from Egorov’s theorem that, with prob-
ability arbitrarily close to 1, the sequence {V'$’} with arbitrary \; is uniformly
approximable by another such sequence with rational \;/2x; hence, the respec-
tive maxima are close with high probability. The A; have little effect on the
sequence { V?} because 6, in (5.5) is independent of them.

The writer is indebted to Professor Harald Cramér for several helpful con-
versations, to the late Professor Marek Fisz for the reference [4] and to the
referee for spotting several errors in the first version of this paper.
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