## AN APPLICATION OF A BALLOT THEOREM IN ORDER STATISTICS1

## By Lajos Takács

## Columbia University

1. Introduction. By making use of two simple combinatorial theorems the author [6], [7] arrived at the following extension of the classical ballot theorem:

THEOREM 1. Let  $\nu_1$ ,  $\nu_2$ ,  $\cdots$ ,  $\nu_{n+1}$  be interchangeable random variables that assume nonnegative integer values and write  $N_r = \nu_1 + \nu_2 + \cdots + \nu_r$  for  $r = 1, 2, \cdots, n+1$ . Denote by  $\Delta_{n+1}^{(c)}$  the number of subscripts  $r = 1, 2, \cdots, n+1$  for which  $N_r < r + c$  where c is a nonnegative integer. Then

(1) 
$$P\{\Delta_{n+1}^{(0)} = j \mid N_{n+1} = n\} = 1/(n+1)$$

for  $j = 1, 2, \dots, n + 1$  and

$$\mathbf{P}\{\Delta_{n+1}^{(c)} = n + 1 | N_{n+1} = n \} = 1$$

(2) 
$$-\sum_{i=1}^{n-c} \frac{c+1}{n+1-i} \mathbf{P}\{N_i = i+c \mid N_{n+1} = n\}$$

provided that the conditional probabilities are defined.

Now we shall give two examples for the application of this theorem in order statistics.

**2.** Two distribution-free statistics. Let  $\xi_1$ ,  $\xi_2$ ,  $\cdots$ ,  $\xi_m$ ,  $\eta_1$ ,  $\eta_2$ ,  $\cdots$ ,  $\eta_n$  be mutually independent random variables having a common continuous distribution function. Denote by  $F_m(x)$  and  $G_n(x)$  the empirical distribution functions of the samples  $(\xi_1, \xi_2, \cdots, \xi_m)$  and  $(\eta_1, \eta_2, \cdots, \eta_n)$  respectively. It is supposed that  $F_m(x)$  and  $G_n(x)$  are continuous on the right. Denote by  $\eta_1^*$ ,  $\eta_2^*$ ,  $\cdots$ ,  $\eta_n^*$  the random variables  $\eta_1$ ,  $\eta_2$ ,  $\cdots$ ,  $\eta_n$  arranged in increasing order. Let  $\gamma(m, n)$  be the number of subscripts  $r = 1, 2, \cdots, n$  for which  $F_m(\eta_r^*) \leq G_n(\eta_r^* - 0)$ , i.e.,  $\gamma(m, n)$  is equal to the number of positive jumps of  $G_n(x)$  relative to  $F_m(x)$ . Further let

(3) 
$$\delta^+(m,n) = \sup_{-\infty < x < \infty} [F_n(x) - G_n(x)].$$

It is easy to see that  $\gamma(m, n)$  and  $\delta^+(m, n)$  are distribution-free statistics. The distribution of the random variable  $\gamma(m, n)$  for n = m was found by B. V. Gnedenko and V. S. Mihalevič [3] and for n = mp, where p is a positive integer, by B. V. Gnedenko and V. S. Mihalevič [4]. The distribution of the random variable  $\delta^+(m, n)$  for n = m was found by B. V. Gnedenko and V. S. Koroljuk [2] and for n = mp, where p is a positive integer, by V. S. Koroljuk [5]. In this paper we shall show that if n = mp, where p is a positive integer, then the distributions of  $\gamma(m, n)$  and  $\delta^+(m, n)$  can easily be obtained by using Theorem 1.

Received 23 January 1964.

<sup>&</sup>lt;sup>1</sup> This research was supported by the Office of Naval Research under Contract Number Nonr-266(59).

1356

THEOREM 2. If n = mp, where p is a positive integer, and c is a nonnegative integer, then

(4) 
$$\mathbf{P}\{\gamma(m, n) = j\} = 1/(n+1)$$

for  $j = 0, 1, \dots, n$ , and

(5) 
$$\mathbf{P}\left\{\delta^{+}(m,n) \leq \frac{c}{n}\right\} = 1 - \sum_{(c+1)/p \leq s \leq m} \frac{c+1}{n+c+1-sp} \cdot \binom{sp+s-c-1}{s} \binom{m+n+c-sp-s}{m-s} / \binom{m+n}{m}.$$

Proof. Let  $\nu_r$ ,  $r=1, 2, \dots, n+1$ , be p times the number of variables  $\xi_1, \xi_2, \dots, \xi_m$  falling in the interval  $(\eta_{r-1}^*, \eta_r^*]$  where  $\eta_0^* = -\infty$  and  $\eta_{n+1}^* = +\infty$ , and write  $N_r = \nu_1 + \nu_2 + \dots + \nu_r$  for  $r=1, 2, \dots, n+1$ . Now  $\nu_1, \nu_2, \dots, \nu_{n+1}$  are interchangeable random variables for which  $N_{n+1} = mp$  and

(6) 
$$\mathbf{P}{N_i = sp} = \binom{i+s-1}{s} \binom{m+n-i-s}{m-s} / \binom{m+n}{m}.$$

Evidently  $F_m(\eta_r^*) = N_r/mp$  and  $G_n(\eta_r^* - 0) = (r - 1)/n$  for  $r = 1, \dots, n$ . If n = mp, then  $N_{n+1} = n$  and  $\gamma(m, n)$  equals the number of subscripts  $r = 1, \dots, n$  for which  $N_r < r$ . Since  $N_{n+1} < n + 1$  also holds, we have  $\gamma(m, n) = \Delta_{n+1}^{(0)} - 1$  where by (1)  $\mathbb{P}\{\Delta_{n+1}^{(0)} = j\} = 1/(n+1)$  for  $j = 1, \dots, n+1$ . This proves (4). To prove (5) we note that if n = mp, then

$$\delta^{+}(m,n) = \max_{1 \le r \le n} \left[ F_m(\eta_r^*) - G_n(\eta_r^* - 0) \right] = n^{-1} \max_{1 \le r \le n+1} (N_r - r + 1).$$
Thus

$$\mathbf{P}\{\delta^+(m, n) \le c/n\} = \mathbf{P}\{N_r < r + c \text{ for } r = 1, \dots, n + 1\}$$

and the right hand side is given by (2) where  $N_i$  has the distribution (6). This proves (5). It should be noted that if p = 1, then (5) reduces to

(7) 
$$\mathbf{P}\left\{\delta^{+}(n,n) \leq \frac{c}{n}\right\} = 1 - \binom{2n}{n+1+c} / \binom{2n}{n}.$$

Finally, we mention that E. F. Drion [1] has considered a related problem. He found that the probability that  $\inf_{0<\sigma_n(x)<1} [F_m(x)-G_n(x)] > 0$  is 1/(4n-2) if m=n, and 1/(m+n) if (m,n)=1.

## REFERENCES

- [1] Drion, E. F. (1952). Some distribution-free tests for the difference between two empirical cumulative distribution functions. *Ann. Math. Statist.* **23** 563-574.
- [2] GNEDENKO, B. V. and KOROLJUK, V. S. (1951). On the maximum discrepancy between two empirical distribution functions. *Dokl. Akad. Nauk SSSR*. 80 525-528. (English translation: Selected Translations in Math. Statist. and Prob., IMS and AMS, 1 (1961) 13-16.)
- [3] GNEDENKO, B. V. and MIHALEVIČ, V. S. (1952). On the distribution of the number of excesses of one empirical distribution function over another. *Dokl. Akad. Nauk*

- SSSR. 82 841-843. (English translation: Selected Translations in Math. Statist. and Prob., IMS and AMS, 1 (1961) 83-85.)
- [4] GNEDENKO, B. V. and MIHALEVIČ, V. S. (1952). Two theorems on the behavior of empirical distribution functions. *Dokl. Akad. Nauk SSSR.* 85 25-27. (English translation: Selected Translations in Math. Statist. and Prob., IMS and AMS, 1 (1961) 55-57.)
- [5] Koroljuk, V. S. (1955). On the discrepancy of empirical distribution functions for the case of two independent samples. *Izv. Akad. Nauk SSSR. Ser. Math.* **19** 81-96.
- [6] Takács, L. (1962). Ballot problems. Z. Wahrscheinlichkeitstheorie 1 154-158.
- [7] TAKÁCS, L. (1963). The distribution of majority times in a ballot. Z. Wahrscheinlichkeitstheorie 2 118-121.