A REMARK ON THE COIN TOSSING GAME!

By Davip BLAcKwELL AND DAvip FREEDMAN
University of California, Berkeley
Let X,:n = 1 be independent and identically distributed random variables,

assuming the values 1 with probability % each. Let S, = X; + --. + X,.
If 0 < ¢ < o, DeMoivre’s (1718) central limit theorem implies [S,| > en! for
a large enough n. How large? Let (N, ¢) be the least n = N with |S,| > cn’.

THEOREM 1. The mean waiting time for |S,| to exceed nt is infinite; that s,
E[-(1,1)] = o.

THEOREM 2. If 0 < ¢ < 1, the mean waiting time for |Sy| to exceed cn? is finite;
that 2s, E[(N, ¢)] < o« for all N.

Proor or THEOREM 1. Theorem 1 is an immediate consequence of Theorem
ITa (Blackwell and Girshick (1947)). The direct proof given here may be of
interest.

Consider the Markov chain with state space S of all pairs of integers, and
stationary transition mechanism: from (m, n) move to (m + 1, n & 1) with
probability % each. Let D be the set of (m, n) & S with n* < m. Let pi(m, n) be
the probability that, starting from (m, n), the first k = 1, 2, - - - positions of the
chain are in D. In particular, 1p;(2, 0) underestimates the probability that
7(1, 1) exceeds & + 1. Therefore, Theorem 1 follows from

(1) I;pk(2)0) = o,

which will now be proved.
For 0 < B8 < 1, let Ug(m, n) = D i1 8 'pe(m, n), and let Ts transform
real-valued functions with domain S:

(Tef)(m,n) = 0, for (m,n) g D,
1+ 38f(m + L,n+ 1) + f(m + 1,n — 1)], for (m,n) e D.

Plainly, T’ is a uniformly strict contraction of the Banach space B of bounded,
real-valued functions on 8, in the supremum norm: ||Tsf — Tag|| = BIIf — gl
Since Ug( -, -) is a fixed point of Ts, the sequence Tgf converges to Us(- -)
for any f ¢ B. Let W; be a real-valued function on S, bounded above, with
TeWs = Ws. Then Us = Wy, because Ts max[Ws, 0] = TsWs = Wg and
converges to Ug . This argument has been used in (Blackwell (1954), (1964)),
(Dubins (1962)), and considered under very general circumstances in (Dubins
and Savage (1963)). It is stated here for ease of reference.
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Here is an interesting Wy :

(2) Wa(m, n) = Ag(m)(m — n*)

1%

(3) Av=0,  Asm) = 3 67/(m + ), mz L.
=

Clearly, Wg is bounded above and TsWs = W, at (0, 0) and on {(m, n):

(m,n) e Sand n’* > m}. For m = 1and n* < m, Equation (2) implies

(TsWs)(m, n) = 1 + Bdg(m + 1)(m — n’),

so (TgWs)(m, n) — Ws(m, n) =1 — (m — n*)[4s(m) — BAg(m + 1)] =
n*/m = 0, by Equation (3).
The previous paragraph implies Us = Wy ; in particular, Us(2, 0) =
2 D> 208°/(2 + 7). Making 8 1 1 proves Equation (1), and with it Theorem 1
Proor oF THEOREM 2. Let 1 < ¢ < 0, and choose M so large that

(4) (M + 1) — M < (5 — 1)/20.

Consider the Markov process with state space S of pairs (m, y), where m is a
nonnegative integer and y a real number; and stationary transition mechanism :
from (m, y) move to (m + 1, y & o) with probability 1 each. Let D be the set
of all (m, y) ¢ S with m = M and 4* £ m. The last assertion of Theorem 2,
with¢ = 1/0and N = M, follows from: the mean waiting time W (m, y) for the
process to leave D, starting from (m, y) ¢ D, is finite; this will now be proved.

Let D be the set of all (m, ) in S but not in D which can be reached from D
in one move. Let T transform real-valued functions with domain S:

(TF)(m, y) =0, for (m, y) £ D,
1+ 3lfim+1y+ o)+ f(m+ 1,y — o)), for (m,y)eD

Let V be a nonnegative, real-valued function on D'U D, with V = TV on D.
Then V = W, because V = T"V = 770 T W. This argument was developed in
the references already cited.

Here is an interesting V':

(5) V(m,y) = (m — 4" + 2om’ + &* — 1)/4,
(6) A=d—1—2][M+ 1)} — M.

By Equation (4), 4 > 0,s0 V = 0 on D. If (m, y) ¢ D, and y > O,
then (m — 1,y —o)eD,s0 (y — o)’ <m — Landy < o + (m — 1)} implying
' £ m— 14 20(m — 1)} + ¢*. By symmetry this also holds for (m, y) & D,
with y < 0. Therefore V = 0on D, . If (m, y) ¢ D, Equation (5) implies V(m, y)
— (TV)(m,y) = [¢* — 1 — 2¢((m + 1)¥ — m})]/A — 1 = 0, using Equation
(6) and: z — (z + 1)} — «* decreases as z increases through positive values.
The previous paragraph implies V' = W, in particular, W is finite. This completes
the proof of Theorem 2.
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