NOTES

THE LAST RETURN TO EQUILIBRIUM IN A COIN-TOSSING GAME

By D. Blackwell, P. Deuel and D. Freedman²

University of California, Berkeley

Let X_i : $i \leq i < \infty$ be independent random variables with the common distribution: Prob $(X_i = \pm 1) = \frac{1}{2}$ for $1 \leq i < \infty$. Let $S_0 = 0$ and $S_n = \sum_{i=1}^n X_i$ for $1 \leq n < \infty$. Of course, Prob $(S_n = 0) = 0$ unless n is even. Write P(m, n) for the probability that $S_{2i} = 0$ for at least one i satisfying $m \leq i < m + n$.

The purpose of this note is to prove

(1)
$$P(m, n) + P(n, m) = 1$$

for $m \ge 1$ and $n \ge 1$. In particular: $P(m, m) = \frac{1}{2}$. Formula (1) is known for m = 1 and all n; see (Feller, 1960, Equations 4.4 and 4.5, pp. 74–75). The generalization to arbitrary m was suggested by an IBM 7090 calculation, performed mainly to check a program. The calculation gave P(m, n) and P(n, m) to four decimals for 120 pairs (m, n) with $100 \le m, n \le 500$, and (1) was true to four decimals for each pair.

Let L_{2j} be the largest $n \leq 2j$ with $S_n = 0$. After some time, we realized (1) was equivalent to

$$[j,k]$$
 Prob $(L_{2j} = 2k) = \text{Prob } (L_{2j} = 2j - 2k)$

for $1 \le j < \infty$ and $0 \le k \le j$, because $P(m, n) = \text{Prob }(L_{2m+2n-2} \ge 2m)$ and $1 - P(n, m) = \text{Prob }(L_{2m+2n-2} \le 2m - 2)$. In particular, [j.0] is known. But [j.k] can be deduced from [k.0] and [k-j.0] by this easy calculation:

Prob
$$(L_{2j} = 2k) = \text{Prob } (S_{2k} = 0 \text{ and } S_{2k+2i} \neq 0 \text{ for } 1 \leq i \leq j-k)$$

$$= \text{Prob } (S_{2k} = 0) \text{ Prob } (S_{2i} \neq 0 \text{ for } 1 \leq i \leq j-k)$$

$$= \text{Prob } (S_{2i} \neq 0 \text{ for } 1 \leq i \leq k) \text{ Prob } (S_{2j-2k} = 0)$$

$$= \text{Prob } (S_{2j-2k} = 0 \text{ and } S_{2j-2k+2i} \neq 0 \text{ for } 1 \leq i \leq k)$$

$$= \text{Prob } (L_{2j} = 2j - 2k).$$

REFERENCE

[1] Feller, William (1960). An Introduction to Probability Theory and Its Applications, (2nd ed.). Wiley, New York.

Received 30 January 1964; revised 22 April 1964.

¹This investigation was supported (in part) by Public Health Service Research Grant No. GM-10525 from the National Institutes of Health.

² This paper was prepared with the partial support of the National Science Foundation Grant GP-10.