LIMIT THEOREMS FOR STOPPED RANDOM WALKS
By R. H. FARRELL

Cornell University

1. Summary and introduction. In this paper we prove several asymptotic
results about the expected length of time until first passage of a vector valued
random walk. We suppose X; = (X3, ---, X%), ¢ = 1, is a sequence of inde-
pendently and identically distributed random vectors. We assume throughout
that

maxigizr BIXi| < o;  w=EX{, 1<k

and that 0 < minicj<p ;.

(1)

We consider the following kind of first passage problem. Let p(-, ---, -) be a
real valued function of % variables. Given ¢ > 0 define a stopping variable
N(¢) = 1 to be the least integer » such that

2) z(ZXh~nZXQ>a
=1 =1

with N(¢) = oo if the inequality (2) fails for all n = 1. The main result of this
paper is:

TuEOREM 1. Suppose the function p(-, ---, -) 2s @ homogeneous function of
degree one. Given the above assumptions, with probability one lime,»c¢ 'N(¢) =
1/p(pa, - -+, ux). Suppose there is a real number a > 0 such that

(3) ifmimcicra; =0 then ap(ar, -+, &) = minigj<r @y .
Then
(4) lime.e Blc"'N(e) — 1/pua, + -+, m)| = 0.

If one views Theorem 1 in the light of Doob [2] Theorem 1 becomes very
plausible. It is natural to define a continuous parameter process

N(e)—1 N(e)—1
(5) mw=c—p<2 X%, e, 2 m)

7=1 =1

In case the random variables X, ---, X% are nonnegative, using additional
assumptions about p( -, ---, -) it can be shown that asymptotically as ¢ — o«
the process X (-) becomes a stationary Markov process. We plan to examine
this question further in another place.

The language of this paper is that of random variables and probability. We
use freely the idea of stopped random walks. This makes it necessary to define,
in the sequel, many different stopping variables. To simplify notation we use
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STOPPED RANDOM WALKS 1333

the same notation for different stopping variables and leave it to the context to
distinguish the various random variables.

Theorem 1 is a corollary of Theorem 3, stated below. The sequence of the
argument is to prove a one-dimensional result, Theorem 2, then to prove by
mathematical induction a k-dimensional result, Theorem 3, for the choice
p(Zy, -+, &) = minic;<k &5 . The statements of Theorem 2 and Theorem 3
follow.

THaEOREM 2. Suppose {X;, 7 = 1} is a sequence of independently and identically

distributed random variables such that
EX) < ©» and EX;=u>0.

If ¢ > 0 is a real number define an integer valued random variable N (c) to be the
least integer n = 1 such that X1 + - -+ + X, > ¢, with N(c) = o ifforalln = 1,
X1+ - 4+ X, = c. Let h(-) be a real valued continuous strictly increasing

convex function defined on [0, «) such that h(0) = 0 and lims.. h(z)/z = .
Assume that Eh(|X1]) £ A < . Then

P(N(c) < ») = 1; EN(c) < oo;

(6) ¢ < wEN(c) < ¢ + K (AEN(c)).

Convex functions of the type mentioned in the statement of Theorem 2 always
exist. We discuss this question briefly at the beginning of Section 2.

TueorREM 3. Suppose {X;, ¢ = 1} is a sequence of independently and identically
distributed k-dimensional random vectors satvsfying (1). Let p(xy, ---, ) =

min <; < ¢ and let N(c) be defined as in (2). Then
D P(N(c) < =) = 1; EN(c) < ;
lime.e ¢ "EN(c) = 1/(ming <; <k ).

We prove Theorem 2 in Section 2 for the sake of completeness and in order
to have a result including a uniformity condition. Theorem 3 does not have any
uniformity condition. Theorem 4 is a partial generalization of Theorem 2 in
regard to a uniformity condition.

THEOREM 4. Assume the hypotheses and definitions of Theorem 3. In addition
assume thatif2 < 7 <k, i 2 1,then X} =2 0,and that 0 < gy S e < -+ < .
Let h( -) be a real valued nonnegative continuous function defined on [0, ) which
satisfies

(8) h(0) = 0; limg,e h(z)/z = .

There exists a function ax( -, -, ) of three variables (and also depending on h(-))
such that if w > 0, A > 0 then lim,.» ar(c, u, A) = 0 and if

(9) maxi<j<k Eh(lxil) = A, min1§j§k EX{ = p,
then
(10) Vm S ¢'EN(¢) S 1/m + ar(c, p1, A).
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The statement of Theorem 4 is asymmetric in that we require X7, - - -, X} to
be nonnegative random variables. We believe that this restriction can be re-
moved. But we have not been able to do so using the methods of this paper.

The possibility of proving Theorems 2 and 4 (thereby obtaining results with
uniformity conditions) was suggested to the author by arguments in a paper by
Kiefer and Sacks [4]. Both Theorems have application to the study of the asymp-
totic behavior of the expected sample size in sequential tests.

In regard to Theorem 2, since lim,.,h(z)/z = o, if d > 0 then
limgse A (dz) /2 = d limy.e b (y)/y = d lim,,., 2/h(z) = 0. Therefore from
(6) it follows that lim.. ¢ 'EN(c¢) = p". This part of Theorem 2 is known.

The results of this paper on the length of time to first passage are related to
the problems of renewal theory. We refer the reader to Smith [6] for a summary
of results. The only multidimensional result, along the lines of this paper, in
print, seems to be that of Chung [1].

In the proofs we use freely the idea of a stopped random walk and in connection
with this an identity due to Wald [7]. Because this identity is used repeatedly
we state it here.

Suppose {Z, ,n = 1} is a sequence of independently and identically distributed
random variables and E|Z;| < . Suppose N is a random variable taking only
positive integer values and EN < . Suppose for each integer n = 1 the event
{N = n} is independent of the random variables {Z,. , m = n}. Then

ElZi+ -+ Zy] < © and E(Zi+ - + Zy) = (EN)(EZ).

Throughout the remainder of this paper we refer to this as Wald’s identity
and omit further mention of the reference.

In the proofs given below many of the arguments require the definition of new
stopping variables. For the sake of brevity the definitions of these stopping
variables omit the statement that the value is « if the stated condition fails to
hold for any positive integer n. In this context the meaning of statements like
“P(N < =) = 17 is that the exceptional set in question has measure zero.

The proof of Theorem 2 is given in Section 2. The proofs of Theorem 3 and
Theorem 4 require several lemmas proven in Section 3. The proof of Theorem 3
is given in Section 4, of Theorem 4 in Section 5, and of Theorem 1 in Section 6.
The author is indebted to W. L. Smith for the present form of the statement of
Lemma 3 and also for a very much shorter proof.

2. Proof of Theorem 2. Given X1, let F(-) be defined by
(11) F(a) = P(|X4] £ a), —n < a< o
Define a real number sequence {a, , n = 1} by
(12) a0 =0; i i20 then & <an; | RIF(d)<1/(n+1)"
an+

Otherwise the sequence {a,, n = 1} may be arbitrary. Let h(-) be the con-
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tinuous function satisfying h(0) = 0 and
(13) if =20 and a; <2 <ay: then h(z) =7+ 1,

where &'( -) is the derivative of A( -). Then h( -) is a convex function defined on
[0, ). It is easy to verify that lim,., h(z)/z = <« and thatif ¢ = 0 and a; <
Z = @iy then h(z) = (¢ + 1)z. Therefore

B = [ ARDF (@)
<3 [ G+ Ve (@) £ 3 1m0 < .

=0 Ja; 4

(14)

This shows that a convex function with the properties needed for Theorem 2

always exists.
Suppose N is the least integer n = 1 such that X; + .- + X, > ¢. From

the strong law of large numbers it follows that P(N < o) = 1. Define random
variables {N,,,m = 1} by,ifm = 1

(15) N.,=N if N <m; Np,=m if N >m.

Then EN,., < «. We may apply Wald’s identity to A(|X1]) + --- 4+ h(|Xw,|)
and obtain, using Jensen’s inequality,

(16) (Eh(|X1|))(ENw») = Eh(|Xw,|) = W(E|Xx,|).
But using Wald’s identity,
(17)  (EX:)(ENn) £ ¢ + E|Xy,| = ¢ + F'[(EN,)(ER(|Xi]))].

Since as noted earlier lim,,., #'(dz)/z = 0 if d > 0, it follows that SUPmz1 ENm
< . By the monotone convergence theorem, EN = limy. EN,, . Using (17)
and the remarks following, it must be the case that EN < oo.

By definition of N(c), X1 + --- + Xy > c. Using Wald’s identity, it
follows that (EX1)(EN(c)) = c. If h(-) is any convex function on [0, «) such
that h(0) = 0 and h(-) is strictly increasing, then by an argument like the
above, it now follows that if Eh(|X1]) < A then

¢ < pEN(¢c) £ ¢ + W' (AEN(c)).
That completes the proof of Theorem 2.

3. Proofs of some lemmas.
LemMa 1. Let Z; = (Zi, ---, Z%), % = 1, be a sequence of independently and
identically distributed random vectors. Suppose

(18) EZi=wj, 1=2j<k O0<wo;Sw= -
Let N1(0) be defined to be the least integer n = 1 such that

lIA

Wi .

(19) minlé,ék Zl ZZ, > 0.
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There exists a sequence of nonnegative real valued functions {ou( - ), k = 1} such that
(20) if k=1, EN.(0) £ a(F) < o,

where F 1s the joint distribution function of Z .
Proor. By Theorem 2, if £ = 1 then

(21) @EN1(0) < b [(BR(1Z:])) (EN:(0))];

where h(-) is a suitable convex function. We define the functions ax(-) by
induction, &k = 1.
In % dimensions define a sequence of stopping variables {M., i Z 1} by,

M, = 0 with probability one; if j = 0 then given Mo + -+ + M; =

(22)
m, M. is the least integer n = 1 such that Zhii + oo+ Znia > 0.

random variables, and
(23) EMI é al(FI),

Then {M;, i = 1} is a sequence of independently and identically distributed

F; the distribution function of 7. ,
Define k — 1 dimensional random vectors by, if 7 = 1,
Moyt M;
Zf = Z (Zi, ,ZI;) = (Z’:zy )ka)
q=Mot - +M;_1+1

Then using Wald’s identity, EZf = (EMi)(ws, ---, o). Let W be the least
integer n = 1 such that min2§,~§k2?=l Z¥ > 0. Then mingéjékzli'ﬁf""w“’ Z
> 0, and this implies that N(0) = M, + --- + M . Therefore using Wald’s
identity

(24) EN(0) < (EMy)(EW).

By inductive hypothesis, if F¥_, is the joint distribution function of Z%, then
using (23) and (24)

EN(0) £ ar(F1)owa(Fia) = ax(F).

That completes the argument.

Lemma 2. Suppose h( -) is a convex function defined on [0, ) and h(0) = 0.
Then h(z)/x is a nondecreasing function of z > 0.

Proor. Suppose 0 < y < 2. Let y = axsothat 0 = « = 1. Then since k( -)
is a convex function, h(az) = A((1 — a)0 + ax) = (1 — a)h(0) + ah(z) =
ah(z). Therefore h(y)/y = h(ax)/(az) = h(z)/x. The proof is complete.

Levma 3. Suppose {Z;, 1 = 1} is a sequence of independently and identically
distributed random variables with E|Zi| < , EZy = 0. Suppose h(-) is a real-
valued nonmegative function defined on [0, ) that is continuous, h(0) = 0, and
limgaw A(z)/x = . There exists a sequence {bi( ), © = 1} of real valued non-
negative nondecreasing functions (depending on h(-)) satisfying
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if A > 0 then lim;, b;(A) = 0;4fn = 1 and
(25) n
Eh(|Zi|) < A then Eln™"Y_ Zi| = ba(A).

=1

Proor. Define truncated random variables
Zi = Z;if |Z] £ n,1 £ 4, and
Z: = 0 otherwise, 1 < 3.

LetnS, =Zi+ -+ + Z,andnSy, = Z1 + -+ + Zn,n = 1.

Since lim,.. h(z)/x = o« we may find a continuous nonnegative convex
function h*(-) defined on [0, «) satisfying if z = 0, h*(z) = h(z);
limg,., h*(x)/z = o. By Lemma 2, h*(z)/z is a nondecreasing function of z.

We define p(-) by p(z) = 2/h*(z), 0 < & < . Then p(-) is a nonincreasing
function and lim,.. p(z) = 0.

We will need the following inequalities. Let G( -) be the distribution function
of |Zy|. Then

fw |z|G (dz) < /: (|=|/h*(2))* ()G (dz)

(26) " )
< p(n) [ h@)G (@) 5 p(n)a,
Also,
nEZ? = n7! f ’ 2’G (dz) < n?

27 o )
+” fm W (z)p(2)2@ (de) < n™* + p(n)A.

The existence of the function b;(-) is obvious. We proceed inductively to
define functions by (-), - -+, ba(-), -- - which satisfy (25). Then for each n = 2
we may define b,( - ) as the greatest lower bound to all functions by ( -) satisfying
(25) in order to obtain a nondecreasing function of A.

Suppose by(-), b3 (-), - -, ba_s(-) have been chosen to satisfy (25). Then

E|S,| = P(|Z] £n,1 =i 2n)E(Sh|||Z] £n,1Z4i=n)
+ P(|Z:] > n for some ¢, 1 £ 7 < n)
- E(|84| | |1Zs] > n for some 7, 1 < ¢ < n)
(28) < E|Sa| + nP(|Z] > n)E(|Suca] + 07Z0| | |Z4] >
< E|Su| + nP(|Z.] > n)b¥_i(A)
+ P(|Za| > n)E(|Z4] | |Za| > m)
< B|Sa] + p(n)A + p(n)Abs_1(4),
by (26). We use here the fact that S,—; and Z, are independent random variables

)

3
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so that
E(|8nnt| | 1Za] > n) = E|Spa| £ brs(4).
Also by (26) and (27),
EISL] £ (BSH = (0 'EZ2 + (n — 1)n ™ (BZ1)Y)}
< (07 4 p(nh)a + 2% ()

Therefore from (28) it follows that there exist real number sequences
{an(A), n = 1} and {.(A), n = 1} such that a,(A) — 0 and B,(A) — 0 as
n — oo, and

E|Sa| £ an(A) 4 B(A)brs(A).
Define

br(4) = an(4) + Ba(A)bra(4).

Then lim,.. bi(A) = O follows at once. To complete the proof of Lemma 3
we define b,(A) as described earlier.
LeMMA 4. Given the hypotheses of Lemma 3, if & > 0 then

q
P (sup ¢ D Z: > 6) < §7ba(4).

n<gq =1

Proor. Let ; be the least o-algebra of sets in which Z; + .-+ + Z;, Zi,
Zivs, --- are all measurable functions. Then if ¢ = 1, §; D Fua . It is easily
verified that

E(Z1|F0) = 0 (Zy+ -+ + Za).
Further, {E(Z: | 5:),1 = 1} is a backward martingale. By Theorem 3.2, Chapter
7, Doob [3], it follows that

aq
P (supnéq T D Zi > 6) <¢'E
=1

Y Z,-I < 67'a(4).

1=1

Lemma 5. Let Z; = (Z, -+, Z%),i = 1, bea sequence of independenily and
identically distributed random variables. Let 0 < w; = EZi,1 < j < k and assume
that w1 < w2 < w3 £ -+ < wi . Suppose that h(-) is a real valued nonnegative

convex function defined on [0, =) satisfying h(0) = 0 and limz.o h(x)/z = .
We suppose that there is a constant o > 0 such that

(29) Mz +y) £ a(h(z) +h(y)), =220, y=0.
Let W*(c) be the least integer n = 1 such that

(30) ming <<k ; Zﬁ > ¢,

and let Wi (c) be the least integer n = 1 such that
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Zi+ -+ 71>

We suppose that if ¢ > 0, q(c) is a positive integer such that lim.,. g(c) = o
and lim,., g(c)/c¢t = 0. If A = maxi<;<k Bh(|Z7]), then

P(Wi(c) < W¥(e)) = K (A)g(e)(g(e) + 1)/(2¢)
+ (b — 1)byey(40’A)/(minsgjcr (w; — w1)).
(See the statement of Lemma 3 for a definition of b,(-).)
Proor. The event Wi" (¢) < W*(c) implies the event that Z} + --. + Zi >
cand D 5y (Zi — Z%) > O0forsomeq = 1,2 <j < k. Also
q(e)

P(somegq < g(¢), Zi + -~ + Zy>¢) £ 2, P(Zi+ - + Zi > ¢)

=1

(31)

q(e)

< 2 W (A)/e S hT(A)g(e)(g(e) + 1)/(2e).

=1

Also by Lemma 4, and by virtue of (29),

g ,
P(some q > q(c), Zl (Zy — Z3) > 0)

= P(some g > a(c), ¢ LU = 7)) = (en — )] > (o5 — )

< by (BR(|Z1 — Z] — w1 + wj]))/(wj — 1) £ by (4a’A)/(w; — w1).

We use here the assumption of convexity in order to assert that A ( - ) is nondecreas-
ing and that h(|w;|) < A. Formula (31) now follows at once from the preceding
steps.

4. Proof of Theorem 3. The proof of Theorem 3 is complicated by the fact

that u; = w2 = .- = y is a difficult case. We begin the argument by “breaking
the ties.” We assume throughout this section that
(32) O<wm=Ews - = wm.

Choose € > 0 such that y3 — ¢ > 0. We may then find ¢, ---, & satisfying
3B3) e=a>a> - >¢20 O<m—a<m—ea<- - <w=—e¢.
We define new random variables

Zi=X—¢, 12j2k 127

Zi= (Zi,---,Z5), 151

We will prove Theorem 3 for the random variables defined in (34).
Let N(c) be as in the statement of Theorem 3. Let N *(¢) be the least integer

n = 1 such that mins<j<x 21 Z7 > c. Then
(35) N(e) £ N*(e).

(34)
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That the random variables Z3 can take negative values also causes difficulty
in the argument. To circumvent this trouble we define nonnegative random
variables Y, 1 < j £ k, 7 = 1. Define stopping variables {N;, 7 = 1} as follows.

N, = 0 with probability one; if 20 and No+ ---+N;=m

(36) then N is the least integer n = 1
m+n X
such that minig;< > Z% > 0.
7=m+1

{N.,% = 1} is a sequence of independently and identically distributed random
variables. By Lemma 1, EN; < . Define
. Nyt +Ng )
vi= 2 Zg, 127
(37) q=No+-+++N; _1+1
Yi=(Yi, -, Y9, 4zl
The random vectors {Y; ,% = 1} are independently and identically distributed and

EYl = (EN1)</[1 — €1, ", Mk — Ek),

IIA

k, i

v
—

which is finite.
We define W(c) to be the least integer n = 1 such that

n
min1§j§k Z YJ@ > c.

i=1

Then

W(c) Ni+---+N; .
min; <; <k Z Zfl >c
=1 g=No+t--+N;_1+1
which implies, using (35), that
(38) N() SN*(¢) EN:i+ -+ + Nwe -

By Wald’s identity, EN(c) < (EN:)(EW(c)).
We now find an upper bound to EW(c). Let W;(c) be the least integern = 1
suchthat Vi 4+ --- + Y. >¢,1 =75 =< k. Then

(39) Wi(e) = W(e),
and
EW(c) = E(W(c) | Wi(e) = W(e))P(Wi(e) = W(e))
(40) + E(W(c) | Wi(e) < W(e))P(Wi(c) < W(e)) = E(Wi(c))
+ E(W(c) — Wi(e) | Wi(e) < W(e))P(Wi(e) < W(c)).

Given an integer m = 1 let T(c, m, k — 1) be the least integern = 1 such that

m+n

: )
mine<j<k Z Yi>e.

i=m+1



STOPPED RANDOM WALKS 1341

Let ET(c, m,k — 1) = g(¢, k — 1), which is independent of m. Since the random
variables of Y7 are nonnegative, if m = Wi(c) and Wi(c) < W(c) then W(c)
— Wi(e) £ T(c, m, k — 1). Further the event {m = Wy(c), Wi(c) < W(c)} is
independent of the random variable T'(¢, m, k — 1). It follows that

(41 E(W(c) — Wile) | Wi(e) < W(e), Wi(e) = m)

< ET(¢,m k — 1) =gle, bk — 1).
Therefore from (40), EW(c) < EWi(c) + g(c, k — 1)P(Wi(c) < W(c)) and
(42) EN(c) = (EN)[(EWi(c)) + g(c, b — 1)P(Wi(c) < W(e))l.
It is clear that
(43) gle, k — 1) < EWs(c) + --- + EWi(o).

Therefore
(44) EN(c) = (EN.)(EWi(c)) + (ij;EW,-(c))(ENI)P(Wl(c) < W(e)).
Using Lemma 5, lim,.., P(W1(c) < W(c)) = 0. By Theorem 2,
lim Supe. c_lj=zk2EWj(C) < o

Again by Theorem 2, lim supe.. ¢ ‘EWi(c) < 1/(EN:)(um1 — e). Therefore
(45) 1/p £ lim inf.,oc 'EN(c) = lim Supmwc EN(¢) < 1/(um — «).
Since ¢ > 0 is arbitrary, the proof of Theorem 3 is complete.
5. Proof of Theorem 4. Choose ¢ > 0 5o small that EX; — ¢ > 0.If 7 = 1 define
Zi=Xi—¢ Zi=(Z:i,Xi, -, X9.

Let Wi(c) be the least integer n such that Zi + --- + Z» > ¢, and W(c) be
the least integer n = 1 such that min (D5 Zi , mins<j<i D sm X%) > ¢. Then
Wi(e) £ W(c) and as in the calculation giving (40),

EN(c) £ EWi(e)
(46) + E(W(c) — Wile) | Wi(c) < W(e))P(Wi(c) < W(e))
= Wale) + g(c, &k — 1)P(Wi(e) < W(e)).

Let W;(c) be the least integer n = 1suchthat X + --- + X, > ¢,2 <j < k.
Then

(47) g(e, k — 1) < EWy(c) + -+ + EW(e).
Using Theorem 2 there is a function a:( -, -, -) of three variables such that

lime,e ai(e, u, A) = 0,
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andif 2 < j =k,
pi = BYi =z 4, ER(|YI]) = A4,
then
1/uj S ¢ EWi(e) = 1/ui + ai(e, w, A).
Using (46) and (47)
1/m £ ¢ 'EN(c) £ ¢ 'EWy(c)

+ P(Wi(e) < W(c)) (; (s + (e, pa A>>)

(48) S 1/ (m—e) + ale,m — ¢ A)
+POF) < W) (X (/o + oo, e, )
Therefore
BN () — 1/l
(49) < ¢/(pp — €) + a(e, 1 — ¢ 4A)

k
+ POV < W) (35 Wiy + ey, 40))
Referring to (31) in the statement of Lemma 5, we let ¢ = e(c) be a function of
¢ such that e(¢) — 0 as ¢ — o so slowly that
* 1Mo boeey (40’A) /e(c) = O.

Then using Lemma 5 we see that there must be a function ax(-, -, -) satisfying
lime,w ax(c, u, A) = 0 and

(50) BN () — 1/ml| = ax(e, m, A).
That completes the proof.

6. Proof of Theorem 1. If p(-, ---, ) is a homogeneous function of de-
gree one in k variables then using the law of large numbers,

with probability one,
(51) n n
p(ﬂl; ,Mk) = lhnn*“p(n—lth7 ;n_IZXI:>-
=1 =1
Consequently, exactly as for Doob [2],
(52) with probability one, lime,o Np(c)/c = 1/p(pay -+ 5 ma).

We write, in this argument, N,(c) for the stopping variable of Theorem 1.
In the special case that p(21, - -, ) = min (21, - - -, 2x) then {N(¢c) /¢, ¢ > 0}
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is a family of nonnegative random variables (integrable functions) satisfying
(7) and (52). As is well known this implies

(53) lim.e Elc”'N(¢) — (min (1, -+, m))7| = 0.
Given ¢ > 0,and » = 1, N(¢) = n implies
(54) c<min1§,-§kZlX£§ap(zlxi-,--.,z:x’:>.
1= i= =]
Therefore N,p(¢/a) < n and
(55) Ny(c/a) = N(c).

It follows that ENp(c/a) < < and that {¢" N,(c), ¢ > 0} is a uniformly in-
tegrable family of functions. Using (52), (4) now follows. The proof is complete.
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